912 resultados para Estabilidade e Robustez de Sistemas de Controle Neurais
Resumo:
This work consists in the use of techniques of signals processing and artificial neural networks to identify leaks in pipes with multiphase flow. In the traditional methods of leak detection exists a great difficulty to mount a profile, that is adjusted to the found in real conditions of the oil transport. These difficult conditions go since the unevenly soil that cause columns or vacuum throughout pipelines until the presence of multiphases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from ½' to 1' of diameter to simulate leaks and between Upanema and Estreito B, of the UN-RNCE of the Petrobras, where it was possible to detect leaks. The results show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks
Resumo:
In a real process, all used resources, whether physical or developed in software, are subject to interruptions or operational commitments. However, in situations in which operate critical systems, any kind of problem may bring big consequences. Knowing this, this paper aims to develop a system capable to detect the presence and indicate the types of failures that may occur in a process. For implementing and testing the proposed methodology, a coupled tank system was used as a study model case. The system should be developed to generate a set of signals that notify the process operator and that may be post-processed, enabling changes in control strategy or control parameters. Due to the damage risks involved with sensors, actuators and amplifiers of the real plant, the data set of the faults will be computationally generated and the results collected from numerical simulations of the process model. The system will be composed by structures with Artificial Neural Networks, trained in offline mode using Matlab®
Resumo:
Conventional methods to solve the problem of blind source separation nonlinear, in general, using series of restrictions to obtain the solution, often leading to an imperfect separation of the original sources and high computational cost. In this paper, we propose an alternative measure of independence based on information theory and uses the tools of artificial intelligence to solve problems of blind source separation linear and nonlinear later. In the linear model applies genetic algorithms and Rényi of negentropy as a measure of independence to find a separation matrix from linear mixtures of signals using linear form of waves, audio and images. A comparison with two types of algorithms for Independent Component Analysis widespread in the literature. Subsequently, we use the same measure of independence, as the cost function in the genetic algorithm to recover source signals were mixed by nonlinear functions from an artificial neural network of radial base type. Genetic algorithms are powerful tools for global search, and therefore well suited for use in problems of blind source separation. Tests and analysis are through computer simulations
Resumo:
This work proposes the design, the performance evaluation and a methodology for tuning the initial MFs parameters of output of a function based Takagi-Sugeno-Kang Fuzzy-PI controller to neutralize the pH in a stirred-tank reactor. The controller is designed to perform pH neutralization of industrial plants, mainly in units found in oil refineries where it is strongly required to mitigate uncertainties and nonlinearities. In addition, it adjusts the changes in pH regulating process, avoiding or reducing the need for retuning to maintain the desired performance. Based on the Hammerstein model, the system emulates a real plant that fits the changes in pH neutralization process of avoiding or reducing the need to retune. The controller performance is evaluated by overshoots, stabilization times, indices Integral of the Absolute Error (IAE) and Integral of the Absolute Value of the Error-weighted Time (ITAE), and using a metric developed by that takes into account both the error information and the control signal. The Fuzzy-PI controller is compared with PI and gain schedule PI controllers previously used in the testing plant, whose results can be found in the literature.
Resumo:
The main purpose of this work is to develop an environment that allows HYSYS R chemical process simulator communication with sensors and actuators from a Foundation Fieldbus industrial network. The environment is considered a hybrid resource since it has a real portion (industrial network) and a simulated one (process) with all measurement and control signals also real. It is possible to reproduce different industrial process dynamics without being required any physical network modification, enabling simulation of some situations that exist in a real industrial environment. This feature testifies the environment flexibility. In this work, a distillation column is simulated through HYSYS R with all its variables measured and controlled by Foundation Fieldbus devices
Resumo:
Every day, water scarcity becomes a more serious problem and, directly affects global society. Studies are directed in order to raise awareness of the rational use of this natural asset that is essential to our survival. Only 0.007% of the water available in the world have easy access and can be consumed by humans, it can be found in rivers, lakes, etc... To better take advantage of the water used in homes and small businesses, reuse projects are often implemented, resulting in savings for customers of water utilities. The reuse projects involve several areas of engineering, like Environmental, Chemical, Electrical and Computer Engineering. The last two are responsible for the control of the process, which aims to make gray water (soapy water), and clear blue water (rain water), ideal for consumption, or for use in watering gardens, flushing, among others applications. Water has several features that should be taken into consideration when it comes to working its reuse. Some of the features are, turbidity, temperature, electrical conductivity and, pH. In this document there is a proposal to control the pH (potential Hydrogen) through a microcontroller, using the fuzzy logic as strategy of control. The controller was developed in the fuzzy toolbox of Matlab®
Resumo:
The public illumination system of Natal/RN city presents some recurring problems in the aspect of monitoring, since currently is not possible to detect in real time the light bulbs which are on throughout the day, or those which are off or burned out, at night. These factors depreciate the efficiency of the services provided, as well as, the use of energetic resources, because there is energetic waste and, consequently, financial resources that could be applied at the own public system illumination. The purpose of the work is create a prototype in substitution to the currently photoelectric relays used at public illumination, that have the same function, as well others: turn on or off the light bulbs remotely (control flexibility by the use of specifics algorithms supervisory), checking the light bulbs status (on or off) and wireless communication with the system through the ZigBee® protocol. The development steps of this product and the tests carried out are related as a way to validate and justify its use at the public illumination
Resumo:
This work presents the design and construction of an X-Y table of two degrees of freedom, as well as the development of a fuzzy system for its position and trajectory control. The table is composed of two bases that move perpendicularly to each other in the horizontal plane, and are driven by two DC motors. Base position is detected by position sensors attached to the motor axes. A data acquisition board performs the interface between a laptop and the plant. The fuzzy system algorithm was implemented in LabVIEW® programming environment that processes the sensors signals and determines the control variables values that drive the motors. Experimental results using position reference signals (step type signal) and straight and circular paths reference signals are presented to demonstrate the dynamic behavior of fuzzy system
Resumo:
This dissertation contributes for the development of methodologies through feed forward artificial neural networks for microwave and optical devices modeling. A bibliographical revision on the applications of neuro-computational techniques in the areas of microwave/optical engineering was carried through. Characteristics of networks MLP, RBF and SFNN, as well as the strategies of supervised learning had been presented. Adjustment expressions of the networks free parameters above cited had been deduced from the gradient method. Conventional method EM-ANN was applied in the modeling of microwave passive devices and optical amplifiers. For this, they had been proposals modular configurations based in networks SFNN and RBF/MLP objectifying a bigger capacity of models generalization. As for the training of the used networks, the Rprop algorithm was applied. All the algorithms used in the attainment of the models of this dissertation had been implemented in Matlab
Resumo:
Hypertension is a dangerous disease that can cause serious harm to a patient health. In some situations the necessity to control this pressure is even greater, as in surgical procedures and post-surgical patients. To decrease the chances of a complication, it is necessary to reduce blood pressure as soon as possible. Continuous infusion of vasodilators drugs, such as sodium nitroprusside (SNP), rapidly decreased blood pressure in most patients, avoiding major problems. Maintaining the desired blood pressure requires constant monitoring of arterial blood pressure and frequently adjusting the drug infusion rate. Manual control of arterial blood pressure by clinical personnel is very demanding, time consuming and, as a result, sometimes of poor quality. Thus, the aim of this work is the design and implementation of a database of tuned controllers based on patients models, in order to find a suitable PID to be embedded in a Programmable Integrated Circuit (PIC), which has a smaller cost, smaller size and lower power consumption. For best results in controlling the blood pressure and choosing the adequate controller, tuning algorithms, system identification techniques and Smith predictor are used. This work also introduces a monitoring system to assist in detecting anomalies and optimize the process of patient care.
Resumo:
The sanitation companies from Brazil has a great challenge for the XXI century: seek to mitigate the rate of physical waste (water, chemicals and electricity) and financial waste caused by inefficient operating systems drinking water supply, considering that currently we already face, in some cases, the scarcity of water resources. The supply systems are increasingly complex as they seek to minimize waste and at the same time better serve the growing number of users. However, this technological change is to reduce the complexity of the challenges posed by the need to include users with higher quality and efficiency in services. A major challenge for companies of water supplies is to provide a good quality service contemplating reducing expenditure on electricity. In this situation we developed a research by a method that seeks to control the pressure of the distribution systems that do not have the tank in your setup and the water comes out of the well directly to the distribution system. The method of pressure control (intelligent control) uses fuzzy logic to eliminate the waste of electricity and the leaks from the production of pumps that inject directly into the distribution system, which causes waste of energy when the consumption of households is reduced causing the saturation of the distribution system. This study was conducted at Green Club II condominium, located in the city of Parnamirim, state of Rio Grande do Norte, in order to study the pressure behavior of the output of the pump that injects water directly into the distribution system. The study was only possible because of the need we had to find a solution to some leaks in the existing distribution system and the extensions of the respective condominium residences, which sparked interest in developing a job in order to carry out the experiments contained in this research
Resumo:
A hierarchical fuzzy control scheme is applied to improve vibration suppression by using an electro-mechanical system based on the lever principle. The hierarchical intelligent controller consists of a hierarchical fuzzy supervisor, one fuzzy controller and one robust controller. The supervisor combines controllers output signal to generate the control signal that will be applied on the plant. The objective is to improve the performance of the electromechanical system, considering that the supervisor could take advantage of the different techniques based controllers. The robust controller design is based on a linear mathematical model. Genetic algorithms are used on the fuzzy controller and the supervisor tuning, which are based on non-linear mathematical model. In order to attest the efficiency of the hierarchical fuzzy control scheme, digital simulations were employed. Some comparisons involving the optimized hierarchical controller and the non-optimized hierarchical controller will be made to prove the efficiency of the genetic algorithms and the advantages of its use
Resumo:
Industrial automation networks is in focus and is gradually replacing older architectures of systems used in automation world. Among existing automation networks, most prominent standard is the Foundation Fieldbus (FF). This particular standard was chosen for the development of this work thanks to its complete application layer specification and its user interface, organized as function blocks and that allows interoperability among different vendors' devices. Nowadays, one of most seeked solutions on industrial automation are the indirect measurements, that consist in infering a value from measures of other sensors. This can be made through implementation of the so-called software sensors. One of the most used tools in this project and in sensor implementation are artificial neural networks. The absence of a standard solution to implement neural networks in FF environment makes impossible the development of a field-indirect-measurement project, besides other projects involving neural networks, unless a closed proprietary solution is used, which dos not guarantee interoperability among network devices, specially if those are from different vendors. In order to keep the interoperability, this work's goal is develop a solution that implements artificial neural networks in Foundation Fieldbus industrial network environment, based on standard function blocks. Along the work, some results of the solution's implementation are also presented
Resumo:
This work addresses the dynamic control problem of two-wheeled differentially driven non-holonomic mobile robot. Strategies for robot positioning control and robot orientating control are presented. Such strategies just require information about the robot con¯guration (x, y and teta), which can be collected by an absolute positioning system. The strategies development is related to a change on the controlled variables for such systems, from x, y and teta to s (denoting the robot linear displacement) and teta, and makes use of the polar coordinates representation for the robot kinematic model. Thus, it is possible to obtain a linear representation for the mobile robot dynamic model and to develop such strategies. It is also presented that such strategies allow the use of linear controllers to solve the control problem. It is shown that there is flexibility to choice the linear controller (P, PI, PID, Model Matching techniques, others) to be implemented. This work presents an introduction to mobile robotics and their characteristics followed by the control strategies development and controllers design. Finally, simulated and experimental results are presented and commented
Resumo:
There are two main approaches for using in adaptive controllers. One is the so-called model reference adaptive control (MRAC), and the other is the so-called adaptive pole placement control (APPC). In MRAC, a reference model is chosen to generate the desired trajectory that the plant output has to follow, and it can require cancellation of the plant zeros. Due to its flexibility in choosing the controller design methodology (state feedback, compensator design, linear quadratic, etc.) and the adaptive law (least squares, gradient, etc.), the APPC is the most general type of adaptive control. Traditionally, it has been developed in an indirect approach and, as an advantage, it may be applied to non-minimum phase plants, because do not involve plant zero-pole cancellations. The integration to variable structure systems allows to aggregate fast transient and robustness to parametric uncertainties and disturbances, as well. In this work, a variable structure adaptive pole placement control (VS-APPC) is proposed. Therefore, new switching laws are proposed, instead of using the traditional integral adaptive laws. Additionally, simulation results for an unstable first order system and simulation and practical results for a three-phase induction motor are shown