891 resultados para Essential oil concentration
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A tangential filtration process was implemented in this study using porous ceramic tubes made of alpha-alumina produced by the slip-casting technique. These tubes were sintered at 1450 degrees C and characterized by mercury intrusion porosimetry, which revealed a mean pore size of 0.5 mu m. The tubes were chemically impregnated with a zirconium citrate solution, after which they were calcined and heat treated at temperatures of up to 600 and 900 degrees C to eliminate volatile organic compounds and transform the zirconium citrate into zirconium oxide impregnated in the alumina in the form of nanoparticle agglomerates. The microporous pipes were tested on a microfiltration hydraulic system to analyze their performance in the demulsification of sunflower oil and water mixtures. The fluid-dynamic parameters of Reynolds number and transmembrane pressure were varied in the process. The volume of permeate was analyzed by measuring the Total Organic Carbon concentration (TOC), which indicated 99% of oil phase retention. The emulsified mixture was characterized by optical microscopy, while the morphology and composition of the impregnated microporous tubes were analyzed by scanning electron microscopy (SEM). Quantification of the TOC values for the tube impregnated once at 600 degrees C showed the best demulsification performance, with the concentration on permeate smaller than 10 mg/L. The impregnated tube sintered once at 900 degrees C presented low carbon concentration (smaller than 20 mg/L), has the advantage of presenting the greatest trans-membrane flux in relation to the other microporous tube. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The decay rate of six insecticides (azinphos methyl, diazinon, dimethoate, methidathion, parathion methyl, and quinalphos) used to control Dacus oleae was studied. Degradation of pesticides showed pseudo-first-order kinetics with correlation coefficients ranging between -0.936 and -0.998 and half-lives between 4.3 days for dimethoate and 10.5 days for methidathion. Residues in olive oil were greater than on olives, with a maximum concentration factor of 7. Dimethoate was the only pesticide with lower residues in the oil than on the fruits. Olive washing affects pesticide residues ranging from no reduction to a 45% decrease. During 8 months of storage of the olive oil, diazinon, dimethoate, parathion methyl, and quinalphos did not show any remarkable difference, while methidathion and azinphos methyl showed a moderate decrease.
Resumo:
In this work, a CE method for the determination of olive oil acidity was proposed. The method was based on an ethanolic extraction (at 60 degrees C) of the oil long-chain free fatty acids (LC-FFAs) components followed by CE determination in pH 6.86 phosphate buffer at 15 mmol/L concentration containing 4 mmol/L sodium dodecylbenzenesulfonate (SDBS), 10 mmol/L polyoxyethylene 23 lauryl ether (Brij 35((R))), 2% v/v 1-octanol and 45% v/v ACN under indirect UV detection at 224 nm. Although this electrolyte promoted baseline separation of myristic acid (C14:0) (internal standard (IS)) and olive oil major components (palmitic acid (C16:0), oleic acid (C18:1c) and linoleic acid (C18:2cc)) in less than 8 min, after a few injections, the electropherogram profiles were severely altered (peak broadening, migration time shifts, etc.) and the current increased substantially. An adsorption study was conducted revealing that the dissolution of the capillary external polyimide coating during the electrophoretic run caused the detrimental effect. After removal of the capillary tip coating, ten consecutive injections could be performed without any disturbances and this simple procedure was, therefore, implemented during quantitative purposes. The reliability of the proposed method was further investigated by the determination of acidity of an extra virgin olive oil sample in comparison to the established methodology (AOCS method Ca 5a40, alkaline volumetric titration (AVT)). No statistical differences were found within 95% confidence level. A % acidity of 0.39 +/- 0.02 was found for the olive oil sample under consideration.
Resumo:
Salt stress decreases the osmotic potential of soil solution causing water stress, causing toxic effects in the plants resulting in injuries on the metabolism and nutritional disorders, thus compromising the plant growth, resulting in lower production. The calcium silicate and magnesium can perform the same function as limestone, besides providing silicon to plants, may also contribute to the resistance of plants to salt stress. Thus, the objective of this study was to evaluate the effect of calcium and magnesium silicate on the growth of the castor oil plant BRS Energia cultivated under saline conditions. This study evaluated plant height, stem diameter, number of leaves, leaf area, dry weight of shoot and root, and soil chemical characteristics. There was no interaction between factors of salinity level and of silicate level regarding the evaluated variables. There was a direct relationship between salinity levels and plant growth in height and stem diameter. The K concentration in soil were affected by salinity levels.
Resumo:
The proposal of this work was to study the effects of lecithin and soy oil on the fermentative performance of Saccharomyces uvarum I Z 1904, a yeast used in the industrial production of ethanol. High Test Molasses (HTM) was chosen as the fermentation media because it is a substratum that is poor in nutrients, and because it permits one to distinguish the action of lipids from other nutritional factors. The study of the optimization of the concentration of lipids by surface response analysis showed that the lipids favor the performance of the yeast principally when applied separately. Maximum concentrations of the two sources of lipids in the media stimulated the budding rate but did not constitute a protection against cell death. Considering the action of lipids on the cellular parameters studied, the supplementation of the media with 3.0 g/l of soy oil permitted the obtention of maximum responses of cellular viability, budding rate and viability of the buds after 6 successive cycles. In relation to the fermentative parameters, the use of 1.5 g/l of soy oil provided high yields and an equilibrium between the mass of ethanol produced (EM) and the alcoholic yield (Y p/s) , whereas the cellular viability after 6 cycles did not differ statistically from that observed with 3g/l of oil.
Resumo:
Measurements of ultrasonic attenuation and velocity in milk and low concentration water-in-oil (W/O) emulsion were conducted, using a measurement cell with a double-element transducer that eliminates diffraction losses. The milk is characterized by the attenuation coefficient, while in the case of water-in-oil emulsions, the characterization is best represented by the propagation velocity.
Resumo:
Unsteady flow of oil and refrigerant gas through radial clearance in rolling piston compressors has been modeled as a heterogeneous mixture, where the properties are determined from the species conservation transport equation coupled with momentum and energy equations. Time variations of pressure, tangential velocity of the rolling piston and radial clearance due to pump setting have been included in the mixture flow model. Those variables have been obtained by modeling the compression process, rolling piston dynamics and by using geometric characteristics of the pump, respectively. An important conclusion concerning this work is the large variation of refrigerant concentration in the oil-filled radial clearance during the compression cycle. That is particularly true for large values of mass flow rates, and for those cases the flow mixture cannot be considered as having uniform concentration. In presence of low mass flow rates homogeneous flow prevail and the mixture tend to have a uniform concentration. In general, it was observed that for calculating the refrigerant mass flow rate using the difference in refrigerant concentration between compression and suction chambers, a time average value for the gas concentration should be used at the clearance inlet.
Resumo:
Caloric intake is higher than recommended in many populations. Therefore, enhancing olive oil intake alone may not be the most effective way to prevent cardiovascular diseases. The purpose of the present study was to analyse the association of olive oil and dietary restriction on lipid profile and myocardial antioxidant defences. Male Wistar rats (180-200 g, n = 6) were divided into 4 groups: control ad libitum diet (C), 50% restricted diet (DR), fed ad libitum and supplemented with olive oil (3 mL/(kg-day)) (OO), and 50% restricted diet and supplemented with olive oil (DROO). After 30 days of treatments, OO, DR, and DROO groups had increased total cholesterol and high-density lipoprotein cholesterol concentrations. DR and DROO animals showed decreased low-density lipoprotein cholesterol. DROO had the lowest low-density lipoprotein cholesterol concentration. Total lipids and triacylglycerols were raised by dietary restriction and diminished by olive oil. OO rats had higher myocardial Superoxide dismutase and lower catalase and glutathione peroxidase activities than C rats. DR and DROO showed enhanced cardiac Superoxide dismutase, catalase, and glutathione peroxidase activities from the control. Olive oil supplementation alone improved the lipid profile but was more effective when coupled with dietary restriction. There was a synergistic beneficial action of dietary restriction and olive oil on serum lipids and myocardial antioxidant defences.
Resumo:
Oil wastes were evaluated as alternative low-cost substrates for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. Wastes obtained from soybean, cottonseed, babassu, palm, and corn oil refinery were tested. The soybean soapstock waste was the best substrate, generating 11.7 g/L of rhamnolipids with a surface tension of 26.9 mN/m, a critical micelle concentration of 51.5 mg/L, and a production yield of 75%. The monorhamnolipid RhaC10C10 predominates when P. aeruginosa LBI was cultivated on hydrophobic substrates, whereas hydrophilic carbon sources form the dirhamnolipid Rha2C10C10 predominantly. © 2005 American Chemical Society and American Institute of Chemical Engineers.
Resumo:
Recent lines of evidence suggest that the beneficial effects of olive oil are not only related to its high content of oleic acid, but also to the antioxidant potential of its polyphenols. The aim of this work was determine the effects of olive oil and its components, oleic acid and the polyphenol dihydroxyphenylethanol (DPE), on serum lipids, oxidative stress, and energy metabolism on cardiac tissue. Twenty four male Wistar rats, 200 g, were divided into the following 4 groups (n = 6): control (C), OO group that received extra-virgin olive oil (7.5 mL/kg), OA group was treated with oleic acid (3.45 mL/kg), and the DPE group that received the polyphenol DPE (7.5 mg/kg). These components were administered by gavage over 30 days, twice a week. All animals were provided with food and water ad libitum The results show that olive oil was more effective than its isolated components in improving lipid profile, elevating high-density lipoprotein, and diminishing low-density lipoprotein cholesterol concentrations. Olive oil induced decreased antioxidant Mn-superoxide dismutase activity and diminished protein carbonyl concentration, indicating that olive oil may exert direct antioxidant effect on myocardium. DPE, considered as potential antioxidant, induced elevated aerobic metabolism, triacylglycerols, and lipid hydroperoxides concentrations in cardiac muscle, indicating that long-term intake of this polyphenol may induce its undesirable pro-oxidant activity on myocardium. © 2006 NRC Canada.
Resumo:
The present study sought biotensoactive production from soybean oil fry waste using Pseudomonas aeruginosa ATCC 10145 and Pseudomonas aeruginosa isolated from the soil of a petroleum station having undergone gasoline and diesel oil spills. The results of the experiments were analyzed using a complete factorial experimental design, investigating the concentration of soybean oil waste, ammonia sulfate and residual brewery yeast. Assays were performed in 250-mL Erlenmeyer beakers containing 50 mL of production medium, maintained on a rotary shaker at 200 rpm and a temperature of 30±1 °C for a 48-hour fermentation period. Biosurfactant production was monitored through the determination of rhamnose, surface tension and emulsification activity. The Pseudomonas aeruginosa ATCC 10145 strain and isolated Pseudomonas aeruginosa were able to reduce the surface tension of the initial mexlium from 61 mN/m to 32.5 mN/m and 30.0 mN/m as well as produce rhamnose at concentrations of 1.96 and 2.89 g/L with emulsification indices of 96% and 100%, respectively.
Resumo:
Fossil fuels such as diesel are being gradually replaced by biodiesel, a renewable energy source, cheaper and less polluting. However, little is known about the toxic effects of this new energy source on aquatic organisms. Thus, we evaluated biochemical biomarkers related to oxidative stress in Nile tilapia (Oreochromis niloticus) after two and seven exposure days to diesel and pure biodiesel (B100) and blends B5 and B20 at concentrations of 0.01 and 0.1mLL -1. The hepatic ethoxyresorufin-O-deethylase activity was highly induced in all groups, except for those animals exposed to B100. There was an increase in lipid peroxidation in liver and gills in the group exposed to the higher concentration of B5. All treatments caused a significant increase in the levels of 1-hydroxypyrene excreted in the bile after 2 and 7d, except for those fish exposed to B100. The hepatic glutathione-S-transferase increased after 7d in animals exposed to the higher concentration of diesel and in the gill of fish exposed to the higher concentration of pure diesel and B5, but decreased for the two tested concentrations of B100. Superoxide dismutase, catalase and glutathione peroxidase also presented significant changes according to the treatments for all groups, including B100. Biodiesel B20 in the conditions tested had fewer adverse effects than diesel and B5 for the Nile tilapia, and can be suggested as a less harmful fuel in substitution to diesel. However, even B100 could activate biochemical responses in fish, at the experimental conditions tested, indicating that this fuel can also represent a risk to the aquatic biota. © 2011 Elsevier Ltd.
Resumo:
The effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree, Azadirachta indica, on the midgut cells of predatory larvae Ceraeochrysa claveri were analyzed. C. claveri were fed on eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% and 2% during throughout the larval period. Light and electron microscopy showed severe damages in columnar cells, which had many cytoplasmic protrusions, clustering and ruptured of the microvilli, swollen cells, ruptured cells, dilatation and vesiculation of rough endoplasmic reticulum, development of smooth endoplasmic reticulum, enlargement of extracellular spaces of the basal labyrinth, intercellular spaces and necrosis. The indirect ingestion of neem oil with prey can result in severe alterations showing direct cytotoxic effects of neem oil on midgut cells of C. claveri larvae. Therefore, the safety of neem oil to non-target species as larvae of C. claveri was refuted, thus the notion that plants derived are safer to non-target species must be questioned in future ecotoxicological studies. © 2012 Elsevier Ltd.