985 resultados para Equivalent Effective Temperature
Resumo:
Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM in BI can be found in some BI systems. An architecture that pretends to conduct to an effective usage of DM in BI is presented.
Resumo:
The main properties of magnetized strangelets, namely, their energy per baryon, radius and electric charge, are studied in the unpaired strange quark matter phase. Temperature effects are taken into account in order to study their stability compared to the (56)Fe isotope and non-magnetized strangelets within the framework of the MIT bag model. It is concluded that the presence of a magnetic field tends to stabilize more the strangelets, even when temperature is considered. We find that the electric charge is modified in the presence of the magnetic field, leading to higher charge values for magnetized strangelets, when compared to the non-magnetized case.
Resumo:
The main properties of strangelets, namely their energy per baryon, radius and electric charge, are studied in the unpaired magnetized strange quark matter (MSQM) and paired magnetized colour flavour locked (MCFL) phases. Temperature effects are taken into account in order to study their stability compared to the Fe-56 isotope and nonmagnetized strangelets within the framework of the MIT bag model. We conclude that the presence of a magnetic field tends to stabilize the strangelets more, even when temperature is considered. It is also shown that MCFL strangelets are more stable than ordinary MSQM strangelets for typical gap values of the order of O(100) MeV. A distinctive feature in the detection of strangelets either in cosmic rays or in heavy-ion collider experiments could be their electric charge. We find that the electric charge is modified in the presence of the magnetic field, leading to higher (lower) charge values for MSQM (MCFL) strangelets, when compared to the nonmagnetized case.
Resumo:
ISME, Thessaloniki, 2012
Resumo:
The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs may turn electricity generation by renewable sources valuable in electricity markets. Information availability and adequate decision-support tools are crucial for achieving VPPs’ goals. This involves information concerning associated producers and market operation. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, focusing mainly in the information requirements for adequate decision making.
Resumo:
Levels of risk for future disability can be assessed with grip strength. This assessment is of fundamental importance for establishing prevention strategies. It also allows verifying relationships with functional capacity of individuals. Most studies on grip strength use the JAMAR Hydraulic dynamometer that provides the value of isometric force obtained during the performance of grip movement and is considered the “gold standard” for measurement of grip strength. However, there are different dynamometers available commercially, such as portable computerized dynamometer E-Link (Biometrics), which provides the value of maximum force (peak force) in addition to other variables as the rate of fatigue for hand strength, among others. Of our knowledge, there are no studies that allow us to accept or not and compare values obtained with both devices and perhaps use them interchangeably. The aim of this study was to evaluate the absolute agreement between the measurements of grip strength (peak force or maximum force in kg) obtained from two different devices (portable dynamometers): a computerized (E-Link, Biometrics) and one hydraulic (JAMAR).
Resumo:
Os sistemas fotovoltaicos produzem energia eléctrica limpa, e inesgotável na nossa escala temporal. A Agência Internacional de Energia encara a tecnologia fotovoltaica como uma das mais promissoras, esperando nas suas previsões mais optimistas, que em 2050 possa representar 20% da produção eléctrica mundial, o equivalente a 18000 TWh. No entanto, e apesar do desenvolvimento notável nas últimas décadas, a principal condicionante a uma maior proliferação destes sistemas é o ainda elevado custo, aliado ao seu fraco desempenho global. Apesar do custo e ineficiência dos módulos fotovoltaicos ter vindo a diminuir, o rendimento dos sistemas contínua dependente de factores externos sujeitos a grande variabilidade, como a temperatura e a irradiância, e às limitações tecnológicas e falta de sinergia dos seus equipamentos constituintes. Neste sentido procurou-se como objectivo na elaboração desta dissertação, avaliar o potencial de optimização dos sistemas fotovoltaicos recorrendo a técnicas de modelação e simulação. Para o efeito, em primeiro lugar foram identificados os principais factores que condicionam o desempenho destes sistemas. Em segundo lugar, e como caso prático de estudo, procedeu-se à modelação de algumas configurações de sistemas fotovoltaicos, e respectivos componentes em ambiente MatlabTM/SimulinkTM. Em seguida procedeu-se à análise das principais vantagens e desvantagens da utilização de diversas ferramentas de modelação na optimização destes sistemas, assim como da incorporação de técnicas de inteligência artificial para responder aos novos desafios que esta tecnologia enfrentará no futuro. Através deste estudo, conclui-se que a modelação é não só um instrumento útil para a optimização dos actuais sistemas PV, como será, certamente uma ferramenta imprescindível para responder aos desafios das novas aplicações desta tecnologia. Neste último ponto as técnicas de modelação com recurso a inteligência artificial (IA) terão seguramente um papel preponderante. O caso prático de modelação realizado permitiu concluir que esta é igualmente uma ferramenta útil no apoio ao ensino e investigação. Contudo, convém não esquecer que um modelo é apenas uma aproximação à realidade, devendo recorrer-se sempre ao sentido crítico na interpretação dos seus resultados.
Resumo:
Dissertação de Mestrado, Biotecnologia em Controlo Biológico, 18 de Dezembro de 2013, Universidade dos Açores.
Resumo:
We investigate, via numerical simulations, mean field, and density functional theories, the magnetic response of a dipolar hard sphere fluid at low temperatures and densities, in the region of strong association. The proposed parameter-free theory is able to capture both the density and temperature dependence of the ring-chain equilibrium and the contribution to the susceptibility of a chain of generic length. The theory predicts a nonmonotonic temperature dependence of the initial (zero field) magnetic susceptibility, arising from the competition between magnetically inert particle rings and magnetically active chains. Monte Carlo simulation results closely agree with the theoretical findings. DOI: 10.1103/PhysRevLett.110.148306
Resumo:
Asthma is a chronic inflammatory disorder of the respiratory airways affecting people of all ages, and constitutes a serious public health problem worldwide (6). Such a chronic inflammation is invariably associated with injury and repair of the bronchial epithelium known as remodelling (11). Inflammation, remodelling, and altered neural control of the airways are responsible for both recurrent exacerbations of asthma and increasingly permanent airflow obstruction (11, 29, 34). Excessive airway narrowing is caused by altered smooth muscle behaviour, in close interaction with swelling of the airway walls, parenchyma retractile forces, and enhanced intraluminal secretions (29, 38). All these functional and structural changes are associated with the characteristic symptoms of asthma – cough, chest tightness, and wheezing –and have a significant impact on patients’ daily lives, on their families and also on society (1, 24, 29). Recent epidemiological studies show an increase in the prevalence of asthma, mainly in industrial countries (12, 25, 37). The reasons for this increase may depend on host factors (e.g., genetic disposition) or on environmental factors like air pollution or contact with allergens (6, 22, 29). Physical exercise is probably the most common trigger for brief episodes of symptoms, and is assumed to induce airflow limitations in most asthmatic children and young adults (16, 24, 29, 33). Exercise-induced asthma (EIA) is defined as an intermittent narrowing of the airways, generally associated with respiratory symptoms (chest tightness, cough, wheezing and dyspnoea), occurring after 3 to 10 minutes of vigorous exercise with a maximal severity during 5 to 15 minutes after the end of the exercise (9, 14, 16, 24, 33). The definitive diagnosis of EIA is confirmed by the measurement of pre- and post-exercise expiratory flows documenting either a 15% fall in the forced expiratory volume in 1 second (FEV1), or a ≥15 to 20% fall in peak expiratory flow (PEF) (9, 24, 29). Some types of physical exercise have been associated with the occurrence of bronchial symptoms and asthma (5, 15, 17). For instance, demanding activities such as basketball or soccer could cause more severe attacks than less vigorous ones such as baseball or jogging (33). The mechanisms of exercise-induced airflow limitations seem to be related to changes in the respiratory mucosa induced by hyperventilation (9, 29). The heat loss from the airways during exercise, and possibly its post-exercise rewarming may contribute to the exercise-induced bronchoconstriction (EIB) (27). Additionally, the concomitant dehydration from the respiratory mucosa during exercise leads to an increased interstitial osmolarity, which may also contribute to bronchoconstriction (4, 36). So, the risk of EIB in asthmatically predisposed subjects seems to be higher with greater ventilation rates and the cooler and drier the inspired air is (23). The incidence of EIA in physically demanding coldweather sports like competitive figure skating and ice hockey has been found to occur in up to 30 to 35% of the participants (32). In contrast, swimming is often recommended to asthmatic individuals, because it improves the functionality of respiratory muscles and, moreover, it seems to have a concomitant beneficial effect on the prevalence of asthma exacerbations (14, 26), supporting the idea that the risk of EIB would be smaller in warm and humid environments. This topic, however, remains controversial since the chlorified water of swimming pools has been suspected as a potential trigger factor for some asthmatic patients (7, 8, 20, 21). In fact, the higher asthma incidence observed in industrialised countries has recently been linked to the exposition to chloride (7, 8, 30). Although clinical and epidemiological data suggest an influence of humidity and temperature of the inspired air on the bronchial response of asthmatic subjects during exercise, some of those studies did not accurately control the intensity of the exercise (2, 13), raising speculation of whether the experienced exercise overload was comparable for all subjects. Additionally, most of the studies did not include a control group (2, 10, 19, 39), which may lead to doubts about whether asthma per se has conditioned the observed results. Moreover, since the main targeted age group of these studies has been adults (10, 19, 39), any extrapolation to childhood/adolescence might be questionable regarding the different lung maturation. Considering the higher incidence of asthma in youngsters (30) and the fact that only the works of Amirav and coworkers (2, 3) have focused on this age group, a scarcity of scientific data can be identified. Additionally, since the main environmental trigger factors, i.e., temperature and humidity, were tested separately (10, 28, 39) it would be useful to analyse these two variables simultaneously because of their synergic effect on water and heat loss by the airways (31, 33). It also appears important to estimate the airway responsiveness to exercise within moderate environmental ranges of temperature and humidity, trying to avoid extreme temperatures and humidity conditions used by others (2, 3). So, the aim of this study was to analyse the influence of moderate changes in air temperature and humidity simultaneously on the acute ventilatory response to exercise in asthmatic children. To overcome the above referred to methodological limitations, we used a 15 minute progressive exercise trial on a cycle ergometer at 3 different workload intensities, and we collected data related to heart rate, respiratory quotient, minute ventilation and oxygen uptake in order to ensure that physiological exercise repercussions were the same in both environments. The tests were done in a “normal” climatic environment (in a gymnasium) and in a hot and humid environment (swimming pool); for the latter, direct chloride exposition was avoided.
Resumo:
A new effective isotropic potential is proposed for the dipolar hard-sphere fluid, on the basis of recent results by others for its angle-averaged radial distribution function. The new effective potential is shown to exhibit oscillations even for moderately high densities and moderately strong dipole moments, which are absent from earlier effective isotropic potentials. The validity and significance of this result are briefly discussed.
Resumo:
A great number of low-temperature geothermal fields occur in Northern-Portugal related to fractured rocks. The most important superficial manifestations of these hydrothermal systems appear in pull-apart tectonic basins and are strongly conditioned by the orientation of the main fault systems in the region. This work presents the interpretation of gravity gradient maps and 3D inversion model produced from a regional gravity survey. The horizontal gradients reveal a complex fault system. The obtained 3D model of density contrast puts into evidence the main fault zone in the region and the depth distribution of the granitic bodies. Their relationship with the hydrothermal systems supports the conceptual models elaborated from hydrochemical and isotopic water analyses. This work emphasizes the importance of the role of the gravity method and analysis to better understand the connection between hydrothermal systems and the fractured rock pattern and surrounding geology. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on the structural and optical properties of Co-doped TiO2 thin films grown onto (0001)Al2O3 substrates by non-reactive pulsed laser deposition (PLD) using argon as buffer gas. It is shown that by keeping constant the substrate temperature at as low as 310 degrees C and varying only the background gas pressure between 7 Pa and 70 Pa, it is possible to grow either epitaxial rutile or pure anatase thin films, as well as films with a mixture of both polymorphs. The optical band gaps of the films are red shifted in comparison with the values usually reported for undoped TiO2, which is consistent with n-type doping of the TiO2 matrix. Such band gap red shift brings the absorption edge of the Co-doped TiO2 films into the visible region, which might favour their photocatalytic activity. Furthermore, the band gap red shift depends on the films' phase composition, increasing with the increase of the Urbach energy for increasing rutile content. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Mestrado em Engenharia Química
Resumo:
In this contribution, we investigate the low-temperature, low-density behaviour of dipolar hard-sphere (DHS) particles, i.e., hard spheres with dipoles embedded in their centre. We aim at describing the DHS fluid in terms of a network of chains and rings (the fundamental clusters) held together by branching points (defects) of different nature. We first introduce a systematic way of classifying inter-cluster connections according to their topology, and then employ this classification to analyse the geometric and thermodynamic properties of each class of defects, as extracted from state-of-the-art equilibrium Monte Carlo simulations. By computing the average density and energetic cost of each defect class, we find that the relevant contribution to inter-cluster interactions is indeed provided by (rare) three-way junctions and by four-way junctions arising from parallel or anti-parallel locally linear aggregates. All other (numerous) defects are either intra-cluster or associated to low cluster-cluster interaction energies, suggesting that these defects do not play a significant part in the thermodynamic description of the self-assembly processes of dipolar hard spheres. (C) 2013 AIP Publishing LLC.