910 resultados para Enzymatic oxidation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1-(Phenylthio)-, 1-(phenylseleno)- and 1-(phenyltelluro)-propan-2-ol were efficiently resolved by CAL-B in sc-CO(2). (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrocatalytic oxidation of glycine by doped nickel hydroxide modified electrodes and their use as sensors are described. The electrode modification was carried out by a simple electrochemical coprecipitation and its electrochemical properties were investigated. The modified electrode presented activity for glycine oxidation after applying a potential required to form NiOOH (similar to 0.45 V vs Ag/AgCl). In these conditions a sensitivity of 0.92 mu A mmol(-1) L and a linear response range from 0.1 up to 1.2 mmol L(-1) were achieved in the electrolytic Solutions at PH 12.6. Limits of detection and quantification were found to be 30 and 110 mu mol L(-1), respectively. Kinetic studies performed with rotating disk electrode (RDE) and by chronoamperometry allowed to determine the heterogeneous rate constant of 4.3 x 10(2) mol(-1) Ls(-1), Suggesting that NiOOH is a good electrocatalyst for glycine oxidation. NiOOH activity to oxidize other amino acids was also investigated, (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The [Ru(3)O(H(3)CCO(2))(6)(py)(2)(L)]PF(6) clusters, where L=methanol or dimethyl sulfoxide, can be activated by peroxide or oxygen donor species, such as tert-butyl hydroperoxide (TBHP) or iodosylbenzene (PhIO), respectively, generating reactive intermediates of the type [Ru(3)(IV,IV,III)=0](+). In this way, they catalyse the oxidation of cyclohexane or cyclohexene by TBHP and PhIO, via oxygen atom transfer, rather than by the alternative oxygen radical mechanism characteristic of this type of complexes. In addition to their ability to perform efficient olefin epoxydation catalysis, these clusters also promote the cleavage of the C-H bond in hydrocarbons, resembling the oxidation catalysis by metal porphyrins. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of whole cells of micro-organisms to bring about the biotransformation of an organic compound offers a number of advantages, but problems caused by enzymatic Promiscuity may be encountered upon With Substrates hearing more than one functional group. A one-pot screening method, in which whole fungal cells were incubated with a Mixture of 4-rnethylcyclohexanone I and phenyl methyl Sulfide 2, has been employed to determine the chemoselectivity of various biocatalysts. The hyphomycetes, Aspergillus terreus CCT 3320 and A. terreus URM 3571, catalysed the oxidation of 2 accompanied by the reduction of I to 4-methylcyclohexanol 1a and, for strain A. terreus CCT 3320, the Baeyer-Villiger oxidation of 1. The Basidomycetes, Trametes versicolor CCB 202, Pycnoporus sanguineus CCB 501 and Trichaptum byssogenum CCB 203, catalysed the oxidation of 2 and the reduction 1, but no Baeyer-Villiger reaction products were detected. In contrast. Trametes rigida CCB 285 catalysed the biotransformation of 1 to 1a, exclusively, in the absence of any detectable Sulfide oxidation reactions. The chemoselective reduction Of (+/-)-2-(phenylthio)cyclohexanone 3 by T. rigida CCB 285 afforded exclusively the (+)-cis-(1R,2S) and (+)-trans-(1S,2S) diastereoisomers of 2-(phenylthio)cyclohexan-1-ol 3a in moderate yields (13% and 27%, respectively) and high enantiomeric excesses (>98%). Chemoselective screening for the reduction of a ketone and/or the oxidation Of a Sulfide group in one pot by whole cells of micro-organisms represents an attractive technique with applications in the development of synthesis of complex molecule hearing different functional groups. (C) 2008 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrocatalytic oxidation of ascorbate on a ruthenium oxide hexacyanoferrate (RuOHCF) glassy carbon (GC) modified electrode was investigated at pH 6.9 by using rotating disc electrode (RDE) voltammetry. The influence of the systematic variation of rotation rate, film thickness, ascorbate concentration and the electrode potential indicated that the rate of cross-chemical reaction between Ru(III) centres immobilized into the film and ascorbate controls the overall process. The kinetic regime may be classified as a Sk `` mechanism and the second order rate constant for the surface electrocatalytic reaction was found to be 1.56 x 10(-3) mol(-1) L-1 s(-1) cm. A carbon fibre microelectrode modified with the RuOHCF film was successfully used as an amperometric sensor to monitor the ascorbate diffusion in a simulated microenvironment experiment. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes the catalytic oxidation of urea performed by nickel hydroxide and nickel/cobalt hydroxide modified electrodes by using both electrodeposited films and nanoparticles. The incorporation of Co foreign atoms leads to a slight increase in sensitivity besides the shift in redox process, avoiding the oxygen reaction. Nanostructured Ni80Co20(OH)(2) was synthesized by sonochemical route producing 5 nm diameter particles characterized by high-resolution transmission electron microscopy (HRTEM) being immobilized onto electrode by using the electrostatic Layer-by-layer technique, yielding attractive modified electrodes for sensor development. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resonance Raman, FTIR, X-ray diffraction, UV-vis-NIR, electron paramagnetic resonance, X-ray absorption at Si K-edge and electron microscopy were employed for characterizing the products formed through electrochemical oxidation of intercalated anilinium ions inside the cationic montmorillonite (MMT) clay. The layer silicate structure was not affected by the anilinium oxidation between the layers. The intercalated products present only an electronic absorption band at 400 nm, very low conductivity (ca. 10(-7) S cm(-1)) and their Raman spectrum displays bands, with high relative intensities, assigned to the benzidine dication, indicating that this product was formed in high amount. Nevertheless, bands that can be correlated to phenazine-like segments and 1,4-phenylenediamine repeat units (PANI like segments) are also observed. The very low EPR signal indicates that diamagnetic species are predominant. All results are compared to those obtained by anilinium-MMT chemically oxidized by persulfate and the differences are pointed out. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we prepared a new magnetically recoverable CoO catalyst through the deposition of the catalytic active metal nanoparticles of 2-3 nm on silica-coated magnetite nanoparticles to facilitate the solid separation from liquid media. The catalyst was fully characterized and presented interesting properties in the oxidation of cyclohexene, as for example, selectivity to the allylic oxidation product. It was also observed that CoO is the most active species when compared to Co(2+), Co(3)O(4) and Fe(3)O(4) in the catalytic conditions studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of isosorbide aliphatic polyesters is demonstrated by the use of Novozym 435, a catalyst consisting of Candida antarctica lipase B immobilized on a macroporous support Several experimental procedures were tested and azeotropic distillation was most effective in removing low mass byproduct Furthermore, the use of diethyl ester derivatives of diacid comonomers gave isosorbide copolyesters with highest Isolated yield and molecular weights The length of the diacid aliphatic chain was less restrictive, but with a clear preference for longer aliphatic chains The molecular mass values of the obtained products were equivalent or higher than those obtained by nonenzymatic polymerizations, a clear illustration of the potential of enzymatic over conventional catalysis The ability of Novozym 435 to catalyze the synthesis of isosorbide polyester with weight-average molecular weights in excess of 40000 Da was unexpected given that isosorbide has two chemically distinct secondary hydroxyl groups This is the first example in which isosorbide polyesters were synthesized by enzyme catalysis, opening a large array of possibilities for this important class of biomass-derived building blocks Because these polymers are potential biomaterials the total absence of conventional Lewis acid catalyst residues represents a major Improvement in the toxicity of the material

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ethanol oxidation reaction (EOR) was investigated using PtSnCe/C electrocatalysts in different mass ratios (72:23:5, 68:22:10 and 64:21:15) that were prepared by the polymeric precursor method. Transmission electron microscopy (TEM) showed that the particles ranged in size from approximately 2 to 5 nm. Changes in the net parameters observed for Pt suggest the incorporation of Sn and Ce into the Pt crystalline network with the formation of an alloy between Pt, Sn and/or Ce. Among the PtSnCe catalysts investigated, the 68:22:10 composition showed the highest activity toward ethanol oxidation, and the current time curves obtained in the presence of ethanol in acidic media showed a current density 50% higher than that observed for commercial PtSn/C (E-Tek). During the experiments performed on single direct ethanol fuel cells, the power density for the PtSnCe/C 68:22:10 anode was nearly 40% higher than the one obtained using the commercial catalyst. Data from Fourier transform infrared (FTIR) spectroscopy showed that the observed behavior for ethanol oxidation may be explained in terms of a double mechanism. The presence of Sn and Ce seems to favor CO oxidation, since they produce an oxygen-containing species to oxidize acetaldehyde to acetic acid. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although Pt has been thoroughly studied regarding its activity for the borohydride oxidation reaction (BOR), the BOR mechanism at Pt remains unclear: Depending on the applied potential, spontaneous BH(4)(-) hydrolysis can compete with the direct BOR. The goal of the present work is to provide more insight into the behavior of smooth Pt electrodes toward the BOR, by coupling in situ infrared reflectance spectroscopy with electrochemistry. The measurements were performed on a Pt electrode in 1 M NaOH/1 M NaBH(4), so as to detect the reaction intermediate species generated as a function of the applied potential. Several bands were monitored in the B-H ((v) over bar approximate to 1180, 1080, and 972 cm(-1)) and B-O ((v) over bar = 1325 and similar to 1425 cm(-1)) bond regions upon increased electrode polarization. These absorption bands, which appear sequentially and were already detected for similar measurements on Au electrodes, are assigned to BH(3), BH(2), and BO(2)(-) species. In light of these experimental data and previous results obtained in our group for Pt- or Au-based electrodes, possible initial elementary steps of the BOR on platinum electrodes are proposed and discussed according to the relevant literature data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PtSn/CeO(2)-C electrocatalyst was prepared in a single step by an alcohol-reduction process using ethylene glycol as solvent and reducing agent and CeO(2) (15 wt%) and Vulcan XC72 (85 wt%) as supports. The performance for ethanol oxidation was investigated by cyclic voltammetry and in situ FTIR spectroscopy. The electrocatalytic activity of the PtSn/CeO(2)-C electrocatalyst was higher than that of the PtSn/C electrocatalyst. FTIR studies for ethanol oxidation on PtSn/C electrocatalyst showed that acetaldehyde and acetic acid were the principal products formed, while on PtSn/CeO(2)-C electrocatalyst the principal products formed were CO(2) and acetic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electro-oxidation of methanol at supported tungsten carbide (WC) nanoparticles in sulfuric acid solution was studied using cyclic voltammetry, potentiostatic measurements, and differential electrochemical mass spectroscopy (DEMS). The catalyst was prepared by a sonochemical method and characterized by X-ray diffraction. Over the WC catalyst, the oxidation of methanol (1 M in a sulfuric acid electrolyte) begins at a potential below 0.5 V/RHE during the anodic sweep. During potentiostatic measurements, a maximum current of 0.8 mA mg(-1) was obtained at 0.4 V. Measurements of DEMS showed that the methanol oxidation reaction over tungsten carbide produces CO2 (m/z=44); no methylformate (m/z=60) was detected. These results are discussed in the context of the continued search for alternative materials for the anode catalyst of direct methanol fuel cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysts of Co/Mg/Al promoted with Ce and La were tested in the catalytic partial oxidation of methane (POM) reaction. The addition of promoters was made by anion-exchange. X-ray diffraction (XRD) confirmed the formation of hydrotalcite phase for precursors. The mixed oxides were characterized as a mixture of Co3O4, periclase (Co, Al)MgO and/or spinel structure (Mg, Co)Al2O4. In the catalytic POM reaction over the promoted catalysts, a reduction in the carbon formation rate was found. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the adsorbed intermediates of ethanol electro-oxidation at Pt(1 1 1), Pt(1 0 0) and Pt(1 1 0) using FTIR and SFG spectroscopies. Mainly, we focus on the CO formation. The aim of the present work is to compare the responses coming from two different surf, cc probes: a FTIR spectroscopy and SFG spectroscopy. Between 1800cm(-1) and 2300cm(-1), our MR and SFG results are in good agreement. Specifically in the case of the ethanol/Pt(1 1 1) interface, the SFG spectroscopy presents higher sensibility to the interface response compared to the FTIR spectroscopy. (c) 2008 Elsevier Ltd. All rights reserved.