1000 resultados para Entropia -- Teoria matemàtica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document del fitxer adjunt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotation distance quantifies the difference in shape between two rooted binary trees of the same size by counting the minimum number of elementary changes needed to transform one tree to the other. We describe several types of rotation distance, and provide upper bounds on distances between trees with a fixed number of nodes with respect to each type. These bounds are obtained by relating each restricted rotation distance to the word length of elements of Thompson's group F with respect to different generating sets, including both finite and infinite generating sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we describe the results of some computational explorations in Thompson's group F. We describe experiments to estimate the cogrowth of F with respect to its standard finite generating set, designed to address the subtle and difficult question whether or not Thompson's group is amenable. We also describe experiments to estimate the exponential growth rate of F and the rate of escape of symmetric random walks with respect to the standard generating set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document del fitxer adjunt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss metric and combinatorial properties of Thompson's group T, such as the normal forms for elements and uniqueness of tree pair diagrams. We relate these properties to those of Thompson's group F when possible, and highlight combinatorial differences between the two groups. We define a set of unique normal forms for elements of T arising from minimal factorizations of elements into convenient pieces. We show that the number of carets in a reduced representative of T estimates the word length, that F is undistorted in T, and that cyclic subgroups of T are undistorted. We show that every element of T has a power which is conjugate to an element of F and describe how to recognize torsion elements in T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that the fundamental group of any Seifert 3-manifold is conjugacy separable. That is, conjugates may be distinguished infinite quotients or, equivalently, conjugacy classes are closed in the pro-finite topology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t→ ∞ to this diffusive equilibrium in this distance metrizing the weak convergence of measures. Then, we prove a uniform bound in time on Sobolev norms of the solution, provided the initial data has a finite norm in the corresponding Sobolev space. These results are then combined, using interpolation inequalities, to obtain exponential convergence to the diffusive equilibrium in the strong L¹-norm, as well as various Sobolev norms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The filling length of an edge-circuit η in the Cayley 2-complex of a finite presentation of a group is the minimal integer length L such that there is a combinatorial null-homotopy of η down to a base point through loops of length at most L. We introduce similar notions in which the full-homotopy is not required to fix a base point, and in which the contracting loop is allowed to bifurcate. We exhibit a group in which the resulting filling invariants exhibit dramatically different behaviour to the standard notion of filling length. We also define the corresponding filling invariants for Riemannian manifolds and translate our results to this setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treball de recerca realitzat per un alumne d’ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l’any 2005. Estudi sobre l’ADN que té com a finalitat conèixer introductòriament l’utilització del càlcul matemàtic computacional en les investigacions sobre aquest. Els objectius de l’estudi són per una part, conèixer què és l'ADN i quins són els seus mecanismes de duplicació i de transmissió de la informació genètica, així com el paper d'altres molècules que intervenen en aquest procés ; també s’estudia quins han estat els processos de la cèl·lula que l'ésser humà ha estat capaç de copiar o imitar. A partir d’aquesta introducció, es vol conèixer què s'entén concretament per computació amb ADN i alguns dels problemes matemàtics que s'han resolt, així com algunes aplicacions de l'ADN en altres camps. La recerca ha permès arribar a diverses conclusions. Primerament que l'ADN és un excel·lent candidat per poder fer càlculs matemàtics. En segon lloc, tot i que en el present treball no se solucionen problemes computacionalment difícils es mostra la capacitat de les molècules d'ADN per resoldre problemes. En tercer lloc, l'interès mostrat per importants empreses dedicades a la informàtica fa més esperançador que en un futur hi pugui haver ordinadors que funcionin amb molècules d'ADN. Finalment, es demostra que les matemàtiques, la informàtica i la biologia són tres camps que estan interrelacionats. Per tal de trencar una mica amb la serietat del treball, s'acaba descrivint una manera de posar música a les cadenes d'ADN, i es mostren alguns resultats com són les músiques associades als 24 cromosomes humans, així com les corresponents a 29 proteïnes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a computer-assisted analysis of combinatorial properties of the Cayley graphs of certain finitely generated groups: Given a group with a finite set of generators, we study the density of the corresponding Cayley graph, that is, the least upper bound for the average vertex degree (= number of adjacent edges) of any finite subgraph. It is known that an m-generated group is amenable if and only if the density of the corresponding Cayley graph equals to 2m. We test amenable and non-amenable groups, and also groups for which amenability is unknown. In the latter class we focus on Richard Thompson’s group F.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."