846 resultados para Electricity Demand, Causality, Cointegration Analysis
Resumo:
The financial crisis and Great Recession have been followed by a jobs shortage crisis that most forecasts predict will persist for years given current policies. This paper argues for a wage-led recovery and growth program which is the only way to remedy the deep causes of the crisis and escape the jobs crisis. Such a program is the polar opposite of the current policy orthodoxy, showing how much is at stake. Winning the argument for wage-led recovery will require winning the war of ideas about economics that has its roots going back to Keynes’ challenge of classical macroeconomics in the 1920s and 1930s. That will involve showing how the financial crisis and Great Recession were the ultimate result of three decades of neoliberal policy, which produced wage stagnation by severing the wage productivity growth link and made asset price inflation and debt the engine of demand growth in place of wages; showing how wage-led policy resolves the current problem of global demand shortage without pricing out labor; and developing a detailed set of policy proposals that flow from these understandings. The essence of a wage-led policy approach is to rebuild the link between wages and productivity growth, combined with expansionary macroeconomic policy that fills the current demand shortfall so as to push the economy on to a recovery path. Both sets of measures are necessary. Expansionary macro policy (i.e. fiscal stimulus and easy monetary policy) without rebuilding the wage mechanism will not produce sustainable recovery and may end in fiscal crisis. Rebuilding the wage mechanism without expansionary macro policy is likely to leave the economy stuck in the orbit of stagnation.
Resumo:
The increasing use of fossil fuels in line with cities demographic explosion carries out to huge environmental impact in society. For mitigate these social impacts, regulatory requirements have positively influenced the environmental consciousness of society, as well as, the strategic behavior of businesses. Along with this environmental awareness, the regulatory organs have conquered and formulated new laws to control potentially polluting activities, mostly in the gas stations sector. Seeking for increasing market competitiveness, this sector needs to quickly respond to internal and external pressures, adapting to the new standards required in a strategic way to get the Green Badge . Gas stations have incorporated new strategies to attract and retain new customers whom present increasingly social demand. In the social dimension, these projects help the local economy by generating jobs and income distribution. In this survey, the present research aims to align the social, economic and environmental dimensions to set the sustainable performance indicators at Gas Stations sector in the city of Natal/RN. The Sustainable Balanced Scorecard (SBSC) framework was create with a set of indicators for mapping the production process of gas stations. This mapping aimed at identifying operational inefficiencies through multidimensional indicators. To carry out this research, was developed a system for evaluating the sustainability performance with application of Data Envelopment Analysis (DEA) through a quantitative method approach to detect system s efficiency level. In order to understand the systemic complexity, sub organizational processes were analyzed by the technique Network Data Envelopment Analysis (NDEA) figuring their micro activities to identify and diagnose the real causes of overall inefficiency. The sample size comprised 33 Gas stations and the conceptual model included 15 indicators distributed in the three dimensions of sustainability: social, environmental and economic. These three dimensions were measured by means of classical models DEA-CCR input oriented. To unify performance score of individual dimensions, was designed a unique grouping index based upon two means: arithmetic and weighted. After this, another analysis was performed to measure the four perspectives of SBSC: learning and growth, internal processes, customers, and financial, unifying, by averaging the performance scores. NDEA results showed that no company was assessed with excellence in sustainability performance. Some NDEA higher efficiency Gas Stations proved to be inefficient under certain perspectives of SBSC. In the sequence, a comparative sustainable performance and assessment analyzes among the gas station was done, enabling entrepreneurs evaluate their performance in the market competitors. Diagnoses were also obtained to support the decision making of entrepreneurs in improving the management of organizational resources and promote guidelines the regulators. Finally, the average index of sustainable performance was 69.42%, representing the efforts of the environmental suitability of the Gas station. This results point out a significant awareness of this segment, but it still needs further action to enhance sustainability in the long term
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I- 100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000 kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO2), carbon dioxide (CO2) and nitrogen oxides (NOx). (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a thermoeconomic functional analysis method based on the Second Law of Thermodynamics and applied to analyze four cogeneration systems is presented. The objective of the developed technique is to minimize the operating costs of the cogeneration plant, namely exergetic production cost (EPC), assuming fixed rates of electricity production and process steam in exergy base. In this study a comparison is made between the same four configurations of part I. The cogeneration system consisting of a gas turbine with a heat recovery steam generator, without supplementary firing, has the lowest EPC. (C) 2004 Published by Elsevier Ltd.
Resumo:
The distribution of natural gas is carried out by means of long ducts and intermediate compression stations to compensate the pressure drops due to friction. The natural gas compressors are usually driven by an electric motor or a gas turbine system, offering possibilities for energy management, one of these consisting in generating energy for use in-plant or to commercialize as independent power producer. It can be done by matching the natural gas demand, at the minimum pressure allowed in the reception point, and the storage capacity of the feed duct with the maximum compressor capacity, for storing the natural gas at the maximum permitted pressure. This allows the gas turbine to drive an electric generator during the time in which the decreasing pressure in duct is above the minimum acceptable by the sink unit. In this paper, a line-pack management analysis is done for an existing compression station considering its actual demand curve for determining the economic feasibility of maintaining the gas turbine system driver generating electricity in a peak and off-peak tariff structure. The potential of cost reduction from the point of view of energy resources (natural gas and electric costs) is also analyzed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fuel cell as molten carbonate fuel cell (MCFC) operates at high temperatures. Thus, cogeneration processes may be performed, generating heat for its own process or for other purposes of steam generation in the industry. The use of ethanol is one of the best options because this is a renewable and less environmentally offensive fuel, and is cheaper than oil-derived hydrocarbons, as in the case of Brazil. In that country, because of technical, environmental, and economic advantages, the use of ethanol by steam reforming process has been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where the highest volumes of products are produced, making possible a higher production of energy, that is, a more efficient use of resources. To attain this objective, mass and energy balances were performed. Equilibrium constants and advance degrees were calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree (according to Castellan 1986, Fundamentos da Fisica/Quimica, Editora LTC, Rio de Janeiro, p. 529, in Portuguese) is a coefficient that indicates the evolution of a reaction, achieving a maximum value when all the reactants' content is used of reforming increases when the operation temperature also increases and when the operation pressure decreases. However, at atmospheric pressure (1 atm), the advance degree tends to stabilize in temperatures above 700 degrees C; that is, the volume of supplemental production of reforming products is very small with respect to high use of energy resources necessary. The use of unused ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at the same tension, is higher at 700 degrees C than other studied temperatures such as 600 and 650 degrees C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8% and 58.9% in temperatures between 600 and 700 degrees C. The higher calculated current density is 280 mA/cm(2). The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced powers at 190 mA/cm(2) are 99.8, 109.8, and 113.7 mW/cm(2) for 873, 923, and 973 K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describe a process of internal steam reforming of ethanol.
Resumo:
This paper presents a method for calculating the power flow in distribution networks considering uncertainties in the distribution system. Active and reactive power are used as uncertain variables and probabilistically modeled through probability distribution functions. Uncertainty about the connection of the users with the different feeders is also considered. A Monte Carlo simulation is used to generate the possible load scenarios of the users. The results of the power flow considering uncertainty are the mean values and standard deviations of the variables of interest (voltages in all nodes, active and reactive power flows, etc.), giving the user valuable information about how the network will behave under uncertainty rather than the traditional fixed values at one point in time. The method is tested using real data from a primary feeder system, and results are presented considering uncertainty in demand and also in the connection. To demonstrate the usefulness of the approach, the results are then used in a probabilistic risk analysis to identify potential problems of undervoltage in distribution systems. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The search for better performance in the structural systems has been taken to more refined models, involving the analysis of a growing number of details, which should be correctly formulated aiming at defining a representative model of the real system. Representative models demand a great detailing of the project and search for new techniques of evaluation and analysis. Model updating is one of this technologies, it can be used to improve the predictive capabilities of computer-based models. This paper presents a FRF-based finite element model updating procedure whose the updating variables are physical parameters of the model. It includes the damping effects in the updating procedure assuming proportional and non proportional damping mechanism. The updating parameters are defined at an element level or macro regions of the model. So, the parameters are adjusted locally, facilitating the physical interpretation of the adjusting of the model. Different tests for simulated and experimental data are discussed aiming at evaluating the characteristics and potentialities of the methodology.
Resumo:
With the development of the textile industry, there has been a demand for dye removal from contaminated effluents. In recent years, attention has been directed toward various natural solid materials that are capable of removing pollutants from contaminated water at low cost. One such material is sugarcane bagasse. The aim of the present study was to evaluate adsorption of the dye Acid Violet Alizarin N with different concentrations of sugarcane bagasse and granulometry in agitated systems at different pH. The most promising data (achieved with pH 2.5) was analyzed with both Freundlich and Langmuir isotherms equations. The model that better fits dye adsorption interaction into sugarcane bagasse is Freundlich equation, and thus the multilayer model. Moreover, a smaller bagasse granulometry led to greater dye adsorption. The best treatment was achieved with a granulometry value lower than 0.21 mm at pH 2.50, in which the total removal was estimated at a concentration of 16.25 mg mL(-1). Hence, sugarcane bagasse proves to be very attractive for dye removal from textile effluents.
Resumo:
The aims of this study were (a) to assess the ability of the rating of perceived exertion (RPE) to predict performance (i.e. number of vertical jumps performed to a fixed jump height) of an intermittent vertical jump exercise, and (b) to determine the ability of RPE to describe the physiological demand of such exercise. Eight healthy men performed intermittent vertical jumps with rest periods of 4, 5, and 6s until fatigue. Heart rate and RPE were recorded every five jumps throughout the sessions. The number of vertical jumps performed was also recorded. Random coefficient growth curve analysis identified relationships between the number of vertical jumps and both RPE and heart rate for which there were similar slopes. In addition, there were no differences between individual slopes and the mean slope for either RPE or heart rate. Moreover, RPE and number of jumps were highly correlated throughout all sessions (r=0.97-0.99; P0.001), as were RPE and heart rate (r=0.93-0.97; P0.001). The findings suggest that RPE can both predict the performance of intermittent vertical jump exercise and describe the physiological demands of such exercise.
Resumo:
In this work it was performed energetic and exergetic analyses of three thermal plants to assessment a cogeneration system in expansion of a sugar-alcohol factory. The initial configuration considered is constituted by a low pressure steam generator, single stage steam turbines for electricity generation and crusher, shredder and mills with mechanical driving. In the intermediary configuration, the low pressure steam generator was substituted by another which generates steam at higher pressure and higher temperature, the steam turbines for electricity generation were substituted by a multiple stages extraction-condensation turbine and the other steam turbines were maintained. The final configuration consists in the substitution of these last turbines by electrical motors. Thermodynamic analyses were performed to evaluate the equipment and the overall plants efficiencies to permit a comparison among the plants. Besides of this, some important parameters of the sugar-alcohol factories were calculated.
Resumo:
The Brazilian Ministry of Labour has been attempting to modify the norms used to analyse industrial accidents in the country. For this purpose, in 1994 it tried to make compulsory use of the causal tree approach to accident analysis, an approach developed in France during the 1970s,without having previously determined whether it is suitable for use under the industrial safety conditions that prevail in most Brazilian firms. In addition, apposition from Brazilian employers has blocked the proposed changes to the norms. The present study employed anthropotechnology to analyse experimental application of the causal tree method to work-related accidents in industrial firms in the region of Botucatu, São Paulo. Three work-related accidents were examined in three industrial firms representative of local, national and multinational companies. on the basis of the accidents analysed in this study, the rationale for the use of the causal tree method in Brazil can be summarized for each type of firm as follows:the method is redundant if there is a predominance of the type of risk whose elimination or neutralization requires adoption of conventional industrial safety measures (firm representative of local enterprises); the method is worth while if the company's specific technical risks have already largely been eliminated (firm representative of national enterprises); and the method is particularly appropriate if the firm has a good safety record and the causes of accidents are primarily related to industrial organization and management (multinational enterprise).
Resumo:
Although visualization in the field of dentistry has some of the same requirements as the medicine field, the differences in goal demand specific approaches. This paper reports on the implementation of two fundamentally different approaches to reconstruction of structures from planar cross sections and their application to dentistry data. One of the approaches was an implementation of a distance-based sampling technique, and the other is a new algorithm, based on the Delaunay triangulation. Both were tested using contour data of teeth and the results are compared here in the light of the target applications, which are teaching and training dentistry, as well as simulation of dental procedures and illnesses. Widely mentioned problems encountered in local reconstruction methods such as marching cubes for these cases are clearly illustrated in this paper, and a very satisfactory alternative is given. © 2000 SPIE and IS&T.
Resumo:
Effluents and surface waters around an area involved with the inking of tissues at Itatiba municipality, São Paulo State, Brazil, were chemically analyzed with the purpose of evaluating the influence on the water quality of the chemicals released, as well to provide answers to legislative requirements related to the São Paulo State Register 997 published on 31 May 1976.