973 resultados para Electric circuit analysis.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermoelectric energy conversion can be performed directly on generators without moving parts, using the principle of SEEBECK effect, obtained in junctions of drivers' thermocouples and most recently in semiconductor junctions type p-n which have increased efficiency of conversion. When termogenerators are exposed to the temperature difference (thermal gradient) eletromotriz a force is generated inducing the appearance of an electric current in the circuit. Thus, it is possible to convert the heat of combustion of a gas through a burner in power, being a thermoelectric generator. The development of infrared burners, using porous ceramic plate, is possible to improve the efficiency of heating, and reduce harmful emissions such as CO, CO2, NOx, etc.. In recent years the meliorate of thermoelectric modules semiconductor (TEG's) has stimulated the development of devices generating and recovery of thermal irreversibility of thermal machines and processes, improving energy efficiency and exergy these systems, especially processes that enable the cogeneration of energy. This work is based on the construction and evaluation of a prototype in a pilot scale, for energy generation to specific applications. The unit uses a fuel gas (LPG) as a primary energy source. The prototype consists of a porous plate burner infrared, an adapter to the module generator, a set of semiconductor modules purchased from Hi-Z Inc. and a heat exchanger to be used as cold source. The prototype was mounted on a test bench, using a system of acquisition of temperature, a system of application of load and instrumentation to assess its functioning and performance. The prototype had an efficiency of chemical conversion of 0.31% for electrical and heat recovery for cogeneration of about 33.2%, resulting in an overall efficiency of 33.51%. The efficiency of energy exergy next shows that the use of primary energy to useful fuel was satisfactory, although the proposed mechanism has also has a low performance due to underuse of the area heated by the small number of modules, as well as a thermal gradient below the ideal informed by the manufacturer, and other factors. The test methodology adopted proved to be suitable for evaluating the prototype

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Michigan depends heavily on fossil fuels to generate electricity. Compared with fossil fuels, electricity generation from renewable energy produces less pollutants emissions. A Renewable Portfolio Standard (RPS) is a mandate that requires electric utilities to generate a certain amount of electricity from renewable energy sources. This thesis applies the Cost-Benefits Analysis (CBA) method to investigate the impacts of implementing a 25% in Michigan by 2025. It is found that a 25% RPS will create about $20.12 billion in net benefits to the State. Moreover, if current tax credit policies will not change until 2025, its net present value will increase to about $26.59 billion. Based on the results of this CBA, a 25% RPS should be approved. The result of future studies on the same issue can be improved if more state specific data become available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Druj Aeterni is a large chamber ensemble piece for flute, clarinet, French horn, two trumpets, piano, two percussionists, string quintet, and electric bass. My composition integrates three intellectual pursuits and interests, ancient mythology, cosmology, and mathematics. The title of the piece uses Latin and the language of the Avesta, the holy book of Zoroastrianism, and comments upon a philosophical perspective based in string theory. I abstract the cosmological implications of string theory, apply them to the terminology and theology of Zoroastrianism, and then structure the composition in consideration of a possible reconciliation. The analysis that follows incorporates analytical techniques similar to David Cope’s style of Vectoral Analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis is two-fold. It presents six original pieces composed and arranged by the author, and it provides a thorough analysis of each. The compositions draw from many different musical genres: contemporary jazz, swing, funk, fusion, soul, neo-soul, and rhythm and blues. The applications of melodic, harmonic, and rhythmic techniques derived from these genres can be found in these original compositions. These compositions are inspired by -- and attempt to narrate --life experiences. Parallels between life and music are drawn and explained. By way of introduction, some information is given regarding the ensemble that first performed these original compositions. The ensemble comprised trumpet, tenor saxophone, keyboards, piano, electric bass, upright acoustic bass, drums, and percussion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on tests of photovoltaic systems in order to address two case studies with silicon monocrystalline and silicon polycrystalline panels, respectively. The first case is an identification of the three parameters of the single-diode equivalent circuit for modelling photovoltaic systems with conclusion about the inevitably age degradation. A comparison between experimental observed and computed I-V and V-P characteristics curves is carried out at standard test conditions. The second case is an experimental observation on a photovoltaic system connected to an electric grid in what regards the quality of the energy injected into the grid. A measuring of the harmonic content in the voltage and in the current waveforms at the terminals of the photovoltaic system is carried out in order to conclude about the conformity with the Standard EN 50160 and the IEEE 519-1992, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a control process and frequency adjustment based on the magnetic core reactor for electric vehicle battery charger. Since few decades ago, there have been significant developments in technologies used in wireless power transfer systems, namely in battery charger. In the wireless power transfer systems is essential that the frequency of the primary circuit be equal to the frequency of the secondary circuit so there is the maximum energy transfer. The magnetic core reactor allows controlling the frequencies on both sides of the transmission and reception circuits. Also, the assembly diagrams and test results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a methodology to forecast the hourly and daily consumption in households. The methodology was validated for households in Lisbon region, Portugal. The paper shows that the forecast tool allows obtaining satisfactory results for forecasting. Models of demand response allow the support of consumer’s decision in exchange for an economic benefit by the redefinition of load profile or changing the appliance consumption period. It is also in the interest of electric utilities to take advantage of these changes, particularly when consumers have an action on the demand-side management or production. Producers need to understand the load profile of households that are connected to a smart grid, to promote a better use of energy, as well as optimize the use of micro-generation from renewable sources, not only to delivering to the network but also in self-consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper compares the performance of the complex nonlinear least squares algorithm implemented in the LEVM/LEVMW software with the performance of a genetic algorithm in the characterization of an electrical impedance of known topology. The effect of the number of measured frequency points and of measurement uncertainty on the estimation of circuit parameters is presented. The analysis is performed on the equivalent circuit impedance of a humidity sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper states an introduction, description and implementation of a PV cell under the variation of parameters. Analysis and observation of a different parameters variation of a PV cell are discussed here. To obtain the model for the purpose of analyzing an equivalent circuit with the consisting parameters a photo current source, a series resistor, a shunt resistor and a diode is used. The fundamental equation of PV cell is used to study the model and to analyze and best fit observation data. The model can be used in measuring and understanding the behaviour of photovoltaic cells for certain changes in PV cell parameters. A numerical method is used to analyze the parameters sensitivity of the model to achieve the expected result and to understand the deviation of changes in different parameters situation at various conditions respectively. The ideal parameters are used to study the models behaviour. It is also compared the behaviour of current-voltage and power-voltage by comparing with produced maximum power point though it is a challenge to optimize the output with real time simulation. The whole working process is also discussed and an experimental work is also done to get the closure and insight about the produced model and to decide upon the validity of the discussed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper it is proposed to obtain enhanced and more efficient parameters model from generalized five parameters (single diode) model of PV cells. The paper also introduces, describes and implements a seven parameter model for photovoltaic cell (PV cell) which includes two internal parameters and five external parameters. To obtain the model the mathematical equations and an equivalent circuit consisting of a photo generated current source, a series resistor, a shunt resistor and a diode is used. The fundamental equation of PV cell is used to analyse and best fit the observation data. Especially bisection iteration method is used to obtain the expected result and to understand the deviation of changes in different parameters situation at various conditions respectively. The produced model can be used of measuring and understanding the actions of photovoltaic cells for certain changes and parameters extraction. The effect is also studied with I-V and P-V characteristics of PV cells though it is a challenge to optimize the output with real time simulation. The working procedure is also discussed and an experiment presented to get the closure and insight about the produced model and to decide upon the model validity. At the end, we observed that the result of the simulation is very close to the produced model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of the global warming. In this context, the transportation sector plays a vital role, since it is responsible for a large part of carbon dioxide production. In order to address these issues, the present thesis deals with the development of advanced control strategies for the energy efficiency optimization of plug-in hybrid electric vehicles (PHEVs), supported by the prediction of future working conditions of the powertrain. In particular, a Dynamic Programming algorithm has been developed for the combined optimization of vehicle energy and battery thermal management. At this aim, the battery temperature and the battery cooling circuit control signal have been considered as an additional state and control variables, respectively. Moreover, an adaptive equivalent consumption minimization strategy (A-ECMS) has been modified to handle zero-emission zones, where engine propulsion is not allowed. Navigation data represent an essential element in the achievement of these tasks. With this aim, a novel simulation and testing environment has been developed during the PhD research activity, as an effective tool to retrieve routing information from map service providers via vehicle-to-everything connectivity. Comparisons between the developed and the reference strategies are made, as well, in order to assess their impact on the vehicle energy consumption. All the activities presented in this doctoral dissertation have been carried out at the Green Mobility Research Lab} (GMRL), a research center resulting from the partnership between the University of Bologna and FEV Italia s.r.l., which represents the industrial partner of the research project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The idea behind the project is to develop a methodology for analyzing and developing techniques for the diagnosis and the prediction of the state of charge and health of lithium-ion batteries for automotive applications. For lithium-ion batteries, residual functionality is measured in terms of state of health; however, this value cannot be directly associated with a measurable value, so it must be estimated. The development of the algorithms is based on the identification of the causes of battery degradation, in order to model and predict the trend. Therefore, models have been developed that are able to predict the electrical, thermal and aging behavior. In addition to the model, it was necessary to develop algorithms capable of monitoring the state of the battery, online and offline. This was possible with the use of algorithms based on Kalman filters, which allow the estimation of the system status in real time. Through machine learning algorithms, which allow offline analysis of battery deterioration using a statistical approach, it is possible to analyze information from the entire fleet of vehicles. Both systems work in synergy in order to achieve the best performance. Validation was performed with laboratory tests on different batteries and under different conditions. The development of the model allowed to reduce the time of the experimental tests. Some specific phenomena were tested in the laboratory, and the other cases were artificially generated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD work arises from the necessity to give a contribution to the energy saving field, regarding automotive applications. The aim was to produce a multidisciplinary work to show how much important is to consider different aspects of an electric car realization: from innovative materials to cutting-edge battery thermal management systems (BTMSs), also dealing with the life cycle assessment (LCA) of the battery packs (BPs). Regarding the materials, it has been chosen to focus on carbon fiber composites as their use allows realizing light products with great mechanical properties. Processes and methods to produce carbon fiber goods have been analysed with a special attention on the university solar car Emilia 4. The work proceeds dealing with the common BTMSs on the market (air-cooled, cooling plates, heat pipes) and then it deepens some of the most innovative systems such as the PCM-based BTMSs after a previous experimental campaign to characterize the PCMs. After that, a complex experimental campaign regarding the PCM-based BTMSs has been carried on, considering both uninsulated and insulated systems. About the first category the tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs; the insulated tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs and both of these systems equipped with a liquid cooling circuit. The choice of lighter building materials and the optimization of the BTMS are strategies which helps in reducing the energy consumption, considering both the energy required by the car to move and the BP state of health (SOH). Focusing on this last factor, a clear explanation regarding the importance of taking care about the SOH is given by the analysis of a BP production energy consumption. This is why a final dissertation about the life cycle assessment (LCA) of a BP unit has been presented in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ambitious goals of increasing the efficiency, performance and power densities of transportation drives cannot be met with compromises in the motor reliability. For the insulation specialists the challenge will be critical as the use of wide-bandgap converters (WBG, based on SiC and GaN switches) and the higher operating voltages expected for the next generation drives will enhance the electrical stresses to unprecedented levels. It is expected for the DC bus in aircrafts to reach 800 V (split +/-400 V) and beyond, driven by the urban air mobility sector and the need for electrification of electro-mechanical/electro-hydraulic actuators (an essential part of the "More Electric Aircraft" concept). Simultaneously the DC bus in electric vehicles (EV) traction motors is anticipated to increase up to 1200 V very soon. The electrical insulation system is one of the most delicate part of the machine in terms of failure probability. In particular, the appearance of partial discharges (PD) is disruptive on the reliability of the drive, especially under fast repetitive transients. Extensive experimental activity has been performed to extend the body of knowledge on PD inception, endurance under PD activity, and explore and identify new phenomena undermining the reliability. The focus has been concentrated on the impact of the WGB-converter produced waveforms and the environmental conditions typical of the aeronautical sector on insulation models. Particular effort was put in the analysis at the reduced pressures typical of aircraft cruise altitude operation. The results obtained, after a critical discussion, have been used to suggest a coordination between the insulation PD inception voltage with the converter stresses and to propose an improved qualification procedure based on the existing IEC 60034-18-41 standard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphite is a mineral commodity used as anode for lithium-ion batteries (LIBs), and its global demand is doomed to increase significantly in the future due to the forecasted global market demand of electric vehicles. Currently, the graphite used to produce LIBs is a mix of synthetic and natural graphite. The first one is produced by the crystallization of petroleum by-products and the second comes from mining, which causes threats related to pollution, social acceptance, and health. This MSc work has the objective of determining compositional and textural characteristics of natural, synthetic, and recycled graphite by using SEM-EDS, XRF, XRD, and TEM analytical techniques and couple these data with dynamic Material Flow Analysis (MFA) models, which have the objective of predicting the future global use of graphite in order to test the hypothesis that natural graphite will no longer be used in the LIB market globally. The mineral analyses reveal that the synthetic graphite samples contain less impurities than the natural graphite, which has a rolled internal structure similar to the recycled one. However, recycled graphite shows fractures and discontinuities of the graphene layers caused by the recycling process, but its rolled internal structure can help the Li-ions’ migration through the fractures. Three dynamic MFA studies have been conducted to test distinct scenarios that include graphite recycling in the period 2022-2050 and it emerges that - irrespective of any considered scenario - there will be an increase of synthetic graphite demand, caused by the limited stocks of battery scrap available. Hence, I conclude that both natural and recycled graphite is doomed to be used in the LIB market in the future, at least until the year 2050 when the stock of recycled graphite production will be enough to supersede natural graphite. In addition, some new improvement in the dismantling and recycling processes are necessary to improve the quality of recycled graphite.