931 resultados para Egg
Resumo:
The investigation of the effect of micro impurity on crystal growth by optical microscopy has been validated. The results showed that the growth rate of a lysozyme crystal was affected even if the concentration of impurity of fluorescent-labeled lysozyme (abbreviation, F-lysozyme) was very small. Different concentrations of F-lysozyme had different effects on crystal growth rate. The growth rate decreased much more as F-lysozyme concentration increased. The density of incorporated F-lysozyme on different grown layers of a lysozyme crystal during crystal growth was obtained from the results of flat-bottomed etch pits density. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The embryonic development in Clarias gariepinus was studied under laboratory conditions. The developmental stages of eggs starting from first cleavage were examined microscopically. Photomicroscope was used to take important stages of segmentation, blastulation, differentiation of embryo and hatching. The films of the photograph were developed and printed for each stage produced. The accurate timing and detailed description of each stage was done. The results show that the blastodisc (Polar cap) appeared about 35 minutes after fertilization and the first cleavage dividing the blastodisc into two blastomeres occurs 15 minutes after polar cap formation. Details of the developmental stages of embryos and the timing from one stage to the other were described. The larva shook off the shell and emerged completely from the egg case about 22 hours after fertilization at a water temperature of 25.1 degree C. The accurate determination of the time of initiation of first mitosis is of great importance in fish culture and breeding especially in the production of tetraploids
Resumo:
The sex-ratio of Clarias gariepinus in Opa Reservoir was 2:1 (male/female). The fecundity of C. gariepinus in Opa reservoir ranged between 1,567 and 650,625 egg. The fish species had extended spawning period which probably spreads the risk of predation on the eggs. The population of the fish species could be improved by stocking with the female breeders
Resumo:
Based on the results from egg and larvae surveys, mackerel and horse mackerel are thought to form three more or less distinct stocks each in the North Sea and in the waters west of the British Isles. These are firstly the southern stocks in the southern part of the English Channel, Celtic Sea and Bay of Biscay, secondly the North Sea and finally the western stocks of both species, loeated between the Shetlands and southern Norway. It is argued here that in view of the high mobility and the extended seasonal migrations of both species a c1ear separation of the stocks can hardly be maintained. In this context the results of the 1995 mackerel and horse mackerel egg survey to the southern spawning location is presented.
Resumo:
Early embryogenesis in metazoa is controlled by maternally synthesized products. Among these products, the mature egg is loaded with transcripts representing approximately two thirds of the genome. A subset of this maternal RNA pool is degraded prior to the transition to zygotic control of development. This transfer of control of development from maternal to zygotic products is referred to as the midblastula transition (or MBT). It is believed that the degradation of maternal transcripts is required to terminate maternal control of development and to allow zygotic control of development to begin. Until now this process of maternal transcript degradation and the subsequent timing of the MBT has been poorly understood. I have demonstrated that in the early embryo there are two independent RNA degradation pathways, either of which is sufficient for transcript elimination. However, only the concerted action of both pathways leads to elimination of transcripts with the correct timing, at the MBT. The first pathway is maternally encoded, is triggered by egg activation, and is targeted to specific classes of mRNAs through cis-acting elements in the 3' untranslated region (UTR}. The second pathway is activated 2 hr after fertilization and functions together with the maternal pathway to ensure that transcripts are degraded by the MBT. In addition, some transcripts fail to degrade at select subcellular locations adding an element of spatial control to RNA degradation. The spatial control of RNA degradation is achieved by protecting, or masking, transcripts from the degradation machinery. The RNA degradation and protection events are regulated by distinct cis-elements in the 3' untranslated region (UTR). These results provide the first systematic dissection of this highly conserved process in development and demonstrate that RNA degradation is a novel mechanism used for both temporal and spatial control of development.
Resumo:
During early stages of Drosophila development the heat shock response cannot be induced. It is reasoned that the adverse effects on cell cycle and cell growth brought about by Hsp70 induction must outweigh the beneficial aspects of Hsp70 induction in the early embryo. Although the Drosophila heat shock transcription factor (dHSF) is abundant in the early embryo, it does not enter the nucleus in response to heat shock. In older embryos and in cultured cells the factor is localized within the nucleus in an apparent trimeric structure that binds DNA with high affinity. The domain responsible for nuclear localization upon stress resides between residues 390 and 420 of the dHSF. Using that domain as bait in a yeast two-hybrid system we now report the identification and cloning of a nuclear transport protein Drosophila karyopherin-α3(dKap- α3). Biochemical methods demonstrate that the dKap-α3 protein binds specifically to the dHSF's nuclear localization sequence (NLS). Furthermore, the dKap-α3 protein does not associate with NLSs that contain point mutations which are not transported in vivo. Nuclear docking studies also demonstrate specific nuclear targeting of the NLS substrate by dKap-α3.Consistant with previous studies demonstrating that early Drosophila embryos are refractory to heat shock as a result of dHSF nuclear exclusion, we demonstrate that the early embryo is deficient in dKap-α3 protein through cycle 12. From cycle 13 onward the transport factor is present and the dHSF is localized within the nucleus thus allowing the embryo to respond to heat shock.
The pair-rule gene fushi tarazu (ftz) is a well-studied zygotic segmentation gene that is necessary for the development of the even-numbered parasegments in Drosophila melanogastor. During early embryogenesis, ftz is expressed in a characteristic pattern of seven stripes, one in each of the even-numbered parasegments. With a view to understand how ftz is transcriptionally regulated, cDNAs that encode transcription factors that bind to the zebra element of the ftz promoter have been cloned. Chapter Ill reports the cloning and characterization of the eDNA encoding zeb-1 (zebra element binding protein), a novel steroid receptor-like molecule that specifically binds to a key regulatory element of the ftz promoter. In transient transfection assays employing Drosophila tissue culture cells, it has been shown that zeb-1 as well as a truncated zeb-1 polypeptide (zeb480) that lacks the putative ligand binding domain function as sequencespecific trans-activators of the ftz gene.
The Oct factors are members of the POU family of transcription factors that are shown to play important roles during development in mammals. Chapter IV reports the eDNA cloning and expression of a Drosophila Oct transcription factor. Whole mount in-situ hybridization experiments revealed that the spatial expression patterns of this gene during embryonic development have not yet been observed for any other gene. In early embryogenesis, its transcripts are transiently expressed as a wide uniform band from 20-40% of the egg length, very similar to that of gap genes. This pattern progressively resolves into a series of narrower stripes followed by expression in fourteen stripes. Subsequently, transcripts from this gene are expressed in the central nervous system and the brain. When expressed in the yeast Saccharomyces cerevisiae, this Drosophila factor functions as a strong, octamer-dependent activator of transcription. The data strongly suggest possible functions for the Oct factor in pattern formation in Drosophila that might transcend the boundaries of genetically defined segmentation genes.
Resumo:
The egg of Dixella martinii is described for the first time. The eggs of the Dixidae are placed in three morphological groups: bulbous and meshed; streamlined and smooth; streamlined and minutely spiculated. Ten of the fourteen species known from Britain are placed in these groups. After a detailed description of the egg of D. martinii, the three morphological groups are described and scanning electron micrographs are provided.
Resumo:
Research on the basic reproduction processes of Gammarus is summarized and reviewed, reproductive strategies in males and females being left to two later papers. The author describes the reproductive systems, the development of eggs (oocytes) in the ovaries, courtship and precopulatory amplexus, mating and the production of sperms, egg laying, mortality and diapause.
Resumo:
This paper attempts to review the literature on Gammarus and examine how it allocates its internal resources when producing eggs. There is an extensive literature on the fecundity of freshwater species but almost nothing is known about the sizes and energy contents of the eggs. More is known for saltwater species, in which the mean number of eggs per brood is inversely proportional to mean egg size and directly proportional to the female's body size. Theoretical aspects of egg size, numbers and reproductive effort are examined, along with the relation between sizes of eggs, broods and female body size. The reproductive effort and breeding cycles of both saltwater and freshwater species are reviewed, and reproductive strategies assessed.
Resumo:
Factors affecting the fitness of juvenile salmon are discussed. Although fitness from the genetic point of view is defined as the relative capacity of carriers of a given genotype to transmit their genes to the gene pool of the following generations, growth and survival of individuals are also components of fitness, and are influenced by responses to competition, which is the major topic of this article including implications for management. In order to better understand the relationships of density-dependent survival in Newfoundland, egg depositions were manipulated experimentally in the Freshwater River. Figures demonstrate the relationship between stock (number of eggs per 100 m2 of river) and recruitment (number of smolts per l00 m2 of Atlantic salmon, and also the percentage survival from egg to smolt stage related to potential egg depositions.
Resumo:
The method of E.V. Borutski was used for determining the production of chironomids, that is, the dynamics of the number and biomass of the larvae were analysed, their death, a calculation of emergence and the number of deposited egg layings was carried out. In addition to the method of Borutski, the authors also calculated the seasonal dynamics of the number of larvae of the younger age stages in the microbenthos.
Resumo:
Experimental research was conducted to study the development of eggs of Eudiaptomus gracilis Sars. The egg production was studied as well as the population dynamics. Factors like losses in the lake and through the effluent Rhine at Konstanz were considered.
Resumo:
Detailed descriptions of the early development of the striped bass, Roccus saxitilis (Walbaum), with emphasis on variation in size and morphology, sequence of fin formation, changes in body form, and attainment of the full complement of maristic numbers, are presented and illustrated for the first time. The egg is spherical, transparent, non-adhesive and relatively large. It is pelagic and buoyant, although it sinks in quiet fresh water. When unfertilized, it averages 1.3 mm, in diameter, but is 3.4 mm. when fertilized and water-hardened. The granular yolk sac, green when alive and whitish-yellow when preserved, averages 1.2 mm., and the single amber-colored oil globule is about 0.6 mm. in diameter. Newly hatched striped bass prolarvae, which range from 2.9-3.7 mm. in total length, are relatively undeveloped and nearly transparent, with no mouth opening, unpigmented eyes, and a greatly enlarged yolk sac with the large oil globule projecting beyond the head. When 5-6 mm. long the yolk sac and oil globule are assimilated and the postlarvae I show advanced development of the internal anatomy. Although the fish is still transparent, scattered melanophores are found on the head and body and chromatophores in the eyes and the ventro-posterior edge of the body. Postlarvae transform to young between 7 and 10 mm. in length when the finfolds are lost except in the dorsal, anal and caudal regions. The largest fish in this group possess a well-formed skeleton with a full complement of 25 vertebrae. Between 10 and 20 mm. in length all fish are fully transformed, muscular tissue renders most of the internal structure obscure, and the myotomes, which generally correspond in number with the vertebrae, are no longer visible. At fish lengths of 20-30 mm. scales are found on all specimens, and with the exception of the pectoral fin-rays, a full complement of meristic structures is present in all other fins. At this stage the body is pigmented uniformly with small spots. Linear regressions between several dependent variables and the , independent variable of standard length indicate that the rate of development of head, eye. and snout to anus lengths is proportional to the length of the larvae and young. Body depth and standard length are non-linear among newly-hatched larvae. Hatchery-reared striped bass demonstrated a slow rate of growth, and were regarded as "stunted," when compared to growth rates observed in another study and field collections. Observations were also made on abnormal eggs and teratological larvae and young. Blue-sac disease is tentatively identified and described for the first time in larvae and pugnosed larvae and young are also described for the first time in striped bass.
Resumo:
It is known that the larvae of Chironomidae in the first stages of life after leaving the egg case, swim for a long time in a body of water. Positive reaction in light, the capability of directed swimming and passive floating in suspension allow the larvae to temporarily carry out a planktonic way of life. This study describes the behaviour of Chironomus dorsalis larvae after leaving the egg case. The feeding of chironomid larvae in the first stages of development was also described.
Resumo:
After artificial activation or fertilization of non-nucleate fragments or eggs of the sea urchin, the mitochondria actively synthesize RNA. The RNA made in non-nucleate fragments is shown to be mostly single stranded and to be associated primarily with the low speed pellet of centrifuged cellular homogenates.
Protein synthesis is observed in non-nucleate fragments in the presence or absence of the mitochondrial RNA synthesis: it is found to be qualitatively similar but quantitatively less in the absence of the RNA synthesis. The continued syntheses of proteins in the non-nucleate fragments in the absence of mitochondrial RNA synthesis provides additional evidence for the presence of a stable messenger RNA component in the unfertilized sea urchin egg.
Since the uptake or actinomycin D was found to be inhibited by the presence of a fertilization membrane, ethidium bromide, at 10 μgs/ml, is used as an effective inhibitor of RNA synthesis in non-nucleate fragments and in early cleavage stage embryos. However, this same concentration of ethidium bromide is found to be only partially effective in blocking RNA synthesis at the mesenchyme blastula stage of development.
Low concentrations of ethidium bromide (2 and 5 μgs/ml) are found not to be lethal but to be capable of producing moderate developmental defects. In the presence of concentrations of ethidium bromide adequate to inhibit all the mitochondrial RNA synthesis (10 μgs/ml of ethidium bromide), from fertilization on, the embryos do not cleave beyond the 4-8 cell stages. When similar concentrations of ethidium bromide are added at an early mesenchyme blastula stage, the embryos do not gastrulate but continue to swim for more than 24 additional hours (adequate for control embryos to develop to a late prism stage). These results lead to the conclusion that mitochondrial RNA synthesis may be very essential for normal development to occur.
DNA is synthesized in the non-nucleate fragments of sea urchin eggs. None of the newly synthesized DNA is found in the closed circular form. When phenol extracted directly from the fragments, the DNA is found to sediment at approximately 38 and 27s in sucrose gradients but neither of these size classes could be found associated with the isolated mitochondria. The template for the synthesis of DNA in non-nucleate fragments remains unknown.