946 resultados para Editor Grafico, Modellazione di Superfici Nurbs, OpengGL
Resumo:
The bioaccumulation of phthalate acid esters (PAEs) from industrial products and their mutagenic action has been suggested to be a potential threat to human health. The effects of the most frequently identified PAE, Di-n-butyl phthalate (DBP), and its biodegradation, were examined by comparison of two small scale plots (SSP) of integrated vertical-flow constructed wetlands. The influent DBP concentration was 9.84 mg l(-1) in the treatment plot and the control plot received no DBP. Soil enzymatic activities of dehydrogenase, catalase, protease, phosphatase, urease, cellulase, beta-glucosidase, were measured in the two SSP after DBP application for 1 month and 2 months, and 1 month after the final application. Both treatment and control had significantly higher enzyme activity in the surface soil than in the subsurface soil (P < 0.001) and greater enzyme activity in the down-flow chamber than in the up-flow chamber (P < 0.05). In the constructed wetlands, DBP enhanced the activities of dehydrogenase, catalase, protease, phosphatase and inhibited the activities of urease, cellulase and beta-glucosidase. However, urease, cellulase, beta-glucosidase activities were restored 1 month following the final DBP addition. Degradation of DBP was greater in the surface soil and was reduced in sterile soil, indicating that this process may be mediated by aerobic microorgansims. DBP degradation fitted a first-order model, and the kinetic equation showed that the rate constant was 0.50 and 0.17 d(-1), the half-life was 1.39 and 4.02 d, and the r(2) was 0.99 and 0.98, in surface and subsurface soil, respectively. These results indicate that constructed wetlands are able to biodegrade organic PA-Es such as DBP. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The structural evolution of the ordered N-N' dibutyl-substituted quinacridone (QA4C) multilayers (3 MLs) has been monitored in situ and in real time at various substrate temperatures using low energy electron diffraction (LEED) during organic molecular beam epitaxy (MBE). Experimental results of LEED patterns clearly reveal that the structure of the multilayer strongly depends on the substrate temperature. Multilayer growth can be achieved at the substrate temperatures below 300 K, while at the higher temperatures we can only get one ordered monolayer of QA4C. Two kinds of structures, the commensurate and incommensurate one, often coexist in the QA4C multilayer. With a method of the two-step substrate temperatures, the incommensurate one can be suppressed, and the commensurate, on the other hand, more similar to the (001) plane of the QA4C bulk crystal, prevails with the layer of QA4C increasing to 3 MLs. The two structures in the multilayers are compressed slightly in comparison to the original ones in the first monolayer.
Resumo:
Various nuclear reactions like quasi-fission, fusion-fission or particle and cluster evaporation from excited compound nuclei were studied in heavy-ion reactions at the velocity filter SHIP of GSI. The velocity filter offers the possibility to detect all reaction products under zero degree relative to the beam direction. Together with the measurement of the product velocity distribution this allows for an identification of the underlying reaction mechanism. This article is focussed on reactions of Mg-25 and Ni-64 beams on Pb-206,Pb-207 targets at energies of 5.9 x A MeV and 8.7 x A MeV. Besides evaporation residues from Mg-25 + Pb-206 collisions we found evidence for rotation and quasi-fission of nuclear molecules formed in the entrance channel after the capture stage. The break-up of the systems showed a preferred clustering leading to isotopes in the region 84 <= Z <= 88 and 122 <= N <= 127 of the chart of nuclei.
Resumo:
A double folding method with simplified Skyreme-type nucleon-nucleon interaction is used to calculate the nuclear interaction potential between two nuclei. The calculation is performed in tip-to-tip orientation of the two nuclei if they are deformed. Based on this methods, the potential energy surfaces, the fusion probabilities and the evaporation residue cross sections for some cold fusion reactions leading to super-heavy elements within di-nuclear system model are evaluated. It is indicated that after the improvement, the exponential decreasing systematics of the fusion probability with increasing charge number of projectile on the Pb based target become better and the evaporation residue cross sections are in better agreement with the experimental data.
Resumo:
Yields, correlation shapes, and mean transverse momenta p(T) of charged particles associated with intermediate-to high-p(T) trigger particles (2.5 < p(T) < 10 GeV/c) in d + Au and Au + Au collisions at root s(NN) = 200 GeV are presented. For associated particles at higher p(T) greater than or similar to 2.5 GeV/c, narrow correlation peaks are seen in d + Au and Au + Au, indicating that the main production mechanism is jet fragmentation. At lower associated particle pT < 2 GeV/c, a large enhancement of the near- (Delta phi similar to 0) and away-side (Delta phi similar to pi) associated yields is found, together with a strong broadening of the away-side azimuthal distributions in Au + Au collisions compared to d + Au measurements, suggesting that other particle production mechanisms play a role. This is further supported by the observed significant softening of the away-side associated particle yield distribution at Delta phi similar to pi in central Au + Au collisions.