847 resultados para Ecosystem Functioning
Resumo:
The observed long-term decrease in the regional fire activity of Eastern Canada results in excessive accumulation of organic layer on the forest floor of coniferous forests, which may affect climate-growth relationships in canopy trees. To test this hypothesis, we related tree-ring chronologies of black spruce (Picea mariana (Mill.) B.S.P.) to soil organic layer (SOL) depth at the stand scale in the lowland forests of Quebec's Clay Belt. Late-winter and early-spring temperatures and temperature at the end of the previous year's growing season were the major monthly level environmental controls of spruce growth. The effect of SOL on climate-growth relationships was moderate and reversed the association between tree growth and summer aridity from a negative to a positive relationship: trees growing on thin organic layers were thus negatively affected by drought, whereas it was the opposite for sites with deep (>20-30 cm) organic layers. This indicates the development of wetter conditions on sites with thicker SOL. Deep SOL were also associated with an increased frequency of negative growth anomalies (pointer years) in tree-ring chronologies. Our results emphasize the presence of nonlinear growth responses to SOL accumulation, suggesting 20-30 cm as a provisional threshold with respect to the effects of SOL on the climate-growth relationship. Given the current climatic conditions characterized by generally low-fire activity and a trend toward accumulation of SOL, the importance of SOL effects in the black spruce ecosystem is expected to increase in the future.
Resumo:
Top predators of the arctic tundra are facing a long period of very low prey availability during winter and subsidies from other ecosystems such as the marine environment may help to support their populations. Satellite tracking of snowy owls, a top predator of the tundra, revealed that most adult females breeding in the Canadian Arctic overwinter at high latitudes in the eastern Arctic and spend several weeks (up to 101 d) on the sea-ice between December and April. Analysis of high-resolution satellite images of sea-ice indicated that owls were primarily gathering around open water patches in the ice, which are commonly used by wintering seabirds, a potential prey. Such extensive use of sea-ice by a tundra predator considered a small mammal specialist was unexpected, and suggests that marine resources subsidize snowy owl populations in winter. As sea-ice regimes in winter are expected to change over the next decades due to climate warming, this may affect the wintering strategy of this top predator and ultimately the functioning of the tundra ecosystem.
Resumo:
Little is known about the impact of changing temperature regimes on composition and diversity of cryptogam communities in the Arctic and Subarctic, despite the well-known importance of lichens and bryophytes to the functioning and climate feedbacks of northern ecosystems. We investigated changes in diversity and abundance of lichens and bryophytes within long-term (9-16 years) warming experiments and along natural climatic gradients, ranging from Swedish subarctic birch forest and subarctic/subalpine tundra to Alaskan arctic tussock tundra. In both Sweden and Alaska, lichen diversity responded negatively to experimental warming (with the exception of a birch forest) and to higher temperatures along climatic gradients. Bryophytes were less sensitive to experimental warming than lichens, but depending on the length of the gradient, bryophyte diversity decreased both with increasing temperatures and at extremely low temperatures. Among bryophytes, Sphagnum mosses were particularly resistant to experimental warming in terms of both abundance and diversity. Temperature, on both continents, was the main driver of species composition within experiments and along gradients, with the exception of the Swedish subarctic birch forest where amount of litter constituted the best explanatory variable. In a warming experiment in moist acidic tussock tundra in Alaska, temperature together with soil ammonium availability were the most important factors influencing species composition. Overall, dwarf shrub abundance (deciduous and evergreen) was positively related to warming but so were the bryophytes Sphagnum girgensohnii, Hylocomium splendens and Pleurozium schreberi; the majority of other cryptogams showed a negative relationship to warming. This unique combination of intercontinental comparison, natural gradient studies and experimental studies shows that cryptogam diversity and abundance, especially within lichens, is likely to decrease under arctic climate warming. Given the many ecosystem processes affected by cryptogams in high latitudes (e.g. carbon sequestration, N2-fixation, trophic interactions), these changes will have important feedback consequences for ecosystem functions and climate.
Resumo:
Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A signi?cant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ab. 1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the ?eld has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site.
Resumo:
Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.
Resumo:
The effects of CO2-induced seawater acidification on plankton communities were also addressed in a series of 3 mesocosm experiments, called the Pelagic Ecosystem CO2 Enrichment (PeECE I-III) studies, which were conducted in the Large-Scale Mesocosm Facilities of the University of Bergen, Norway in 2001, 2003 and 2005, respectively. Each experiment consisted of 9 mesocosms, in which CO2 was manipulated to initial concentrations of 190, 350 and 750 µatm in 2001 and 2003, and 350, 700 and 1050 µatm in 2005. The present dataset concerns PeECE I.
Resumo:
Fossil shells of planktonic foraminifera serve as the prime source of information on past changes in surface ocean conditions. Because the population size of planktonic foraminifera species changes throughout the year, the signal preserved in fossil shells is biased towards the conditions when species production was at its maximum. The amplitude of the potential seasonal bias is a function of the magnitude of the seasonal cycle in production. Here we use a planktonic foraminifera model coupled to an ecosystem model to investigate to what degree seasonal variations in production of the species Neogloboquadrina pachyderma may affect paleoceanographic reconstructions during Heinrich Stadial 1 (~18-15 cal. ka B.P.) in the North Atlantic Ocean. The model implies that during Heinrich Stadial 1 the maximum seasonal production occurred later in the year compared to the Last Glacial Maximum (~21-19 cal. ka B.P.) and the pre-industrial era north of 30 ºN. A diagnosis of the model output indicates that this change reflects the sensitivity of the species to the seasonal cycle of sea-ice cover and food supply, which collectively lead to shifts in the modeled maximum production from the Last Glacial Maximum to Heinrich Stadial 1 by up to six months. Assuming equilibrium oxygen isotopic incorporation in the shells of N. pachyderma, the modeled changes in seasonality would result in an underestimation of the actual magnitude of the meltwater isotopic signal recorded by fossil assemblages of N. pachyderma wherever calcification is likely to take place.
Resumo:
A mesocosm experiment was conducted to quantify the relationships between the presence and body size of two burrowing heart urchins (Brissopsis lyrifera and Echinocardium cordatum) and rates of sediment nutrient flux. Furthermore, the impact of seawater acidification on these relationships was determined during this 40-day exposure experiment. Using carbon dioxide (CO2) gas, seawater was acidified to pHNBS 7.6, 7.2 or 6.8. Control treatments were maintained in natural seawater (pH = 8.0). Under normocapnic conditions, burrowing urchins were seen to reduce the sediment uptake of nitrite or nitrate whilst enhancing the release of silicate and phosphate. In acidified (hypercapnic) treatments, the biological control of biogeochemical cycles by urchins was significantly affected, probably through the combined impacts of high CO2 on nitrifying bacteria, benthic algae and urchin behaviour. This study highlights the importance of considering biological interactions when predicting the consequences of seawater acidification on ecosystem function.
Resumo:
Charophytes are found in fresh and brackish waters across the globe and play key roles in coastal ecosystems. However, their response to increasing CO2 is not well understood. The aim of the study was to detect the effects of elevated CO2 on the physiology of charophyte species growing in the brackish Baltic Sea by measuring net primary production. Mesocosm experiments were conducted in the Kõiguste Bay (N Gulf of Riga) during the field season of 2012. Separate mesocosms were maintained at different pCO2 levels: 2000, 1000 and 200 µatm. The experiments were carried out with three species of charophytes: Chara aspera, C. tomentosa and C. horrida. The short-term photosynthetic responses of charophytes to different treatments were measured by the oxygen method. The results show that elevated CO2 levels in brackish water may enhance the photosynthetic activity of charophyte species and suggest that increasing CO2 in the Baltic Sea could have implications for interspecific competition and community structure in a future high CO2 world.
Resumo:
The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl- flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible.
Resumo:
Ocean acidification (OA) caused by excessive CO2 is a potential ecological threat to marine organisms. The impacts of OA on echinoderms are well-documented, but there has been a strong bias towards sea urchins, and limited information is available on sea cucumbers. This work examined the effect of medium-term (60 days) exposure to three pH levels (pH 8.06, 7.72, and 7.41, covering present and future pH variability) on the bioenergetic responses of the sea cucumber, Apostichopus japonicus, an ecologically and economically important holothurian in Asian coasts. Results showed that the measured specific growth rate linearly decreased with decreased pH, leading to a 0.42 %/day decrease at pH 7.41 compared with that at pH 8.06. The impacts of pH on physiological energetics were variable: measured energy consumption and defecation rates linearly decreased with decreased pH, whereas maintenance energy in calculated respiration and excretion were not significantly affected. No shift in energy allocation pattern was observed in A. japonicus upon exposure to pH 7.72 compared with pH 8.06. However, a significant shift in energy budget occurred upon exposure to pH 7.41, leading to decreased energy intake and increased percentage of energy that was lost in feces, thereby resulting in a significantly lowered allocation into somatic growth. These findings indicate that adult A. japonicus is resilient to the OA scenario at the end of the twenty-first century, but further acidification may negatively influence the grazing capability and growth, thereby influencing its ecological functioning as an "ecosystem engineer" and potentially harming its culture output.
Resumo:
We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and delta 13C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in Chla content of leaves, maximum electron transport rate and compensation irradiance. Seagrass community metabolism was intense at the low pH station, with significantly higher net community production, respiration and gross primary production than the control community, whereas metabolism of the unvegetated community did not differ between stations. Productivity was promoted by the low pH, but this was not translated into biomass, probably due to nutrient limitation, grazing or poor environmental conditions. The results indicate that seagrass response in naturally acidified conditions is dependable upon species and geochemical characteristics of the site and highlight the need for a better understanding of complex interactions in these environments.