856 resultados para East European literature.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ongoing oceanic uptake of anthropogenic carbon dioxide (CO2) is significantly altering the carbonate chemistry of seawater, a phenomenon referred to as ocean acidification. Experimental manipulations have been increasingly used to gauge how continued ocean acidification will potentially impact marine ecosystems and their associated biogeochemical cycles in the future; however, results amongst studies, particularly when performed on natural communities, are highly variable, which may reflect community/environment-specific responses or inconsistencies in experimental approach. To investigate the potential for identification of more generic responses and greater experimentally reproducibility, we devised and implemented a series (n = 8) of short-term (2-4 days) multi-level (>=4 conditions) carbonate chemistry/nutrient manipulation experiments on a range of natural microbial communities sampled in Northwest European shelf seas. Carbonate chemistry manipulations and resulting biological responses were found to be highly reproducible within individual experiments and to a lesser extent between geographically separated experiments. Statistically robust reproducible physiological responses of phytoplankton to increasing pCO2, characterised by a suppression of net growth for small-sized cells (<10 µm), were observed in the majority of the experiments, irrespective of natural or manipulated nutrient status. Remaining between-experiment variability was potentially linked to initial community structure and/or other site-specific environmental factors. Analysis of carbon cycling within the experiments revealed the expected increased sensitivity of carbonate chemistry to biological processes at higher pCO2 and hence lower buffer capacity. The results thus emphasise how biogeochemical feedbacks may be altered in the future ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dataset containing macrobenthos data for samples collected during April 2008 in the North-West Black Sea (between 44°46' - 43°45' N latitude and 30° 11' - 29°35' E longitude). Macrobenthos sampling was done in 4 stations using a 0.14 m**2 Van Veen grab. Washing of the sample through two sieves - 1 mm and 0.25 mm mesh size; the material retained by the two sieves was examined at the binocular microscope; all animals were extracted, using fine tweezers and the species or group of species were identified and counted (in order to determine the density of populations); the larger organisms were measured and weighed (structure and biomass); for smaller organisms, the average wet weights inscribed in standard tables were used to calculate the biomass. Taxonomic identification was done at the GeoEcoMar by A. Teaca and T. Begun using the relevant taxonomic literature (Key-book for the identification of the Black Sea and Sea of Azov Fauna, 1968 -1972, Kiev - in Russian, V 1-4; BACESCU, M.C., MÜLLER, G. I., GOMOIU, M.-T., 1971 and BACESCU, M.C., MÜLLER, G. I., GOMOIU, M.-T., 1971-Benthic ecological research to Black Sea. Comparative quantitative and qualitative analyse of pontic benthic fauna. Marine Ecology, 4, 1-357 (in Romanian).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The "SESAME_IT4_ZooAbundance_0-50-100m_SZN" dataset contains data of mesozooplankton species composition and abundance (ind./m**3) from samples collected in the Western Mediterranean in the early spring of 2008 (20 March-5 April) during the SESAME-WP2 cruise IT4. Samples were collected by vertical tows with a closing WP2 net (56 cm diameter, 200 µm mesh size) in the following depth layers: 100-200 m, 50-100 m, 0-50 m. Sampling was always performed in light hours. A flowmeter was applied to the mouth of the net, however, due to its malfunctioning, the volume of filtered seawater was calculated by multiplying the the area by the height of the sampled layer from winch readings. After collection, each sample was split in two halves (1/2) after careful mixing with graduated beakers. Half sample was immediately fixed and preserved in a formaldehyde-seawater solution (4% final concentration) for species composition and abundance. The other half sample was kept fresh for biomass measurements (data already submitted to SESAME database in different files). Here, only the zooplankton abundance of samples in the upper layers 0-50 m and 50-100 m are presented. The abundance data of the samples in the layer 50-100 m will be submitted later in a separate file. The volume of filtered seawater was estimated by multiplying the the area by the height of the sampled layer from winch readings. Identification and counts of specimens were performed on aliquots (1/20-1/5) of the fixed sample or on the total sample (half of the original sample) by using a graduate large-bore pipette. Copepods were identified to the species level and separated into females, males and juveniles (copepodites). All other taxa were identified at the species level when possible, or at higher taxonomic levels. Taxonomic identification was done according to the most relevant and updated taxonomic literature. Total mesozooplankton abundance was computed as sum of all specific abundances determined as explained above.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vast portions of Arctic and sub-Arctic Siberia, Alaska and the Yukon Territory are covered by ice-rich silty to sandy deposits that are containing large ice wedges, resulting from syngenetic sedimentation and freezing. Accompanied by wedge-ice growth in polygonal landscapes, the sedimentation process was driven by cold continental climatic and environmental conditions in unglaciated regions during the late Pleistocene, inducing the accumulation of the unique Yedoma deposits up to >50 meters thick. Because of fast incorporation of organic material into syngenetic permafrost during its formation, Yedoma deposits include well-preserved organic matter. Ice-rich deposits like Yedoma are especially prone to degradation triggered by climate changes or human activity. When Yedoma deposits degrade, large amounts of sequestered organic carbon as well as other nutrients are released and become part of active biogeochemical cycling. This could be of global significance for future climate warming as increased permafrost thaw is likely to lead to a positive feedback through enhanced greenhouse gas fluxes. Therefore, a detailed assessment of the current Yedoma deposit coverage and its volume is of importance to estimate its potential response to future climate changes. We synthesized the map of the coverage and thickness estimation, which will provide critical data needed for further research. In particular, this preliminary Yedoma map is a great step forward to understand the spatial heterogeneity of Yedoma deposits and its regional coverage. There will be further applications in the context of reconstructing paleo-environmental dynamics and past ecosystems like the mammoth-steppe-tundra, or ground ice distribution including future thermokarst vulnerability. Moreover, the map will be a crucial improvement of the data basis needed to refine the present-day Yedoma permafrost organic carbon inventory, which is assumed to be between 83±12 (Strauss et al., 2013, doi:10.1002/2013GL058088) and 129±30 (Walter Anthony et al., 2014, doi:10.1038/nature13560) gigatonnes (Gt) of organic carbon in perennially-frozen archives. Hence, here we synthesize data on the circum-Arctic and sub-Arctic distribution and thickness of Yedoma for compiling a preliminary circum-polar Yedoma map. For compiling this map, we used (1) maps of the previous Yedoma coverage estimates, (2) included the digitized areas from Grosse et al. (2013) as well as extracted areas of potential Yedoma distribution from additional surface geological and Quaternary geological maps (1.: 1:500,000: Q-51-V,G; P-51-A,B; P-52-A,B; Q-52-V,G; P-52-V,G; Q-51-A,B; R-51-V,G; R-52-V,G; R-52-A,B; 2.: 1:1,000,000: P-50-51; P-52-53; P-58-59; Q-42-43; Q-44-45; Q-50-51; Q-52-53; Q-54-55; Q-56-57; Q-58-59; Q-60-1; R-(40)-42; R-43-(45); R-(45)-47; R-48-(50); R-51; R-53-(55); R-(55)-57; R-58-(60); S-44-46; S-47-49; S-50-52; S-53-55; 3.: 1:2,500,000: Quaternary map of the territory of Russian Federation, 4.: Alaska Permafrost Map). The digitalization was done using GIS techniques (ArcGIS) and vectorization of raster Images (Adobe Photoshop and Illustrator). Data on Yedoma thickness are obtained from boreholes and exposures reported in the scientific literature. The map and database are still preliminary and will have to undergo a technical and scientific vetting and review process. In their current form, we included a range of attributes for Yedoma area polygons based on lithological and stratigraphical information from the original source maps as well as a confidence level for our classification of an area as Yedoma (3 stages: confirmed, likely, or uncertain). In its current version, our database includes more than 365 boreholes and exposures and more than 2000 digitized Yedoma areas. We expect that the database will continue to grow. In this preliminary stage, we estimate the Northern Hemisphere Yedoma deposit area to cover approximately 625,000 km². We estimate that 53% of the total Yedoma area today is located in the tundra zone, 47% in the taiga zone. Separated from west to east, 29% of the Yedoma area is found in North America and 71 % in North Asia. The latter include 9% in West Siberia, 11% in Central Siberia, 44% in East Siberia and 7% in Far East Russia. Adding the recent maximum Yedoma region (including all Yedoma uplands, thermokarst lakes and basins, and river valleys) of 1.4 million km² (Strauss et al., 2013, doi:10.1002/2013GL058088) and postulating that Yedoma occupied up to 80% of the adjacent formerly exposed and now flooded Beringia shelves (1.9 million km², down to 125 m below modern sea level, between 105°E - 128°W and >68°N), we assume that the Last Glacial Maximum Yedoma region likely covered more than 3 million km² of Beringia. Acknowledgements: This project is part of the Action Group "The Yedoma Region: A Synthesis of Circum-Arctic Distribution and Thickness" (funded by the International Permafrost Association (IPA) to J. Strauss) and is embedded into the Permafrost Carbon Network (working group Yedoma Carbon Stocks). We acknowledge the support by the European Research Council (Starting Grant #338335), the German Federal Ministry of Education and Research (Grant 01DM12011 and "CarboPerm" (03G0836A)), the Initiative and Networking Fund of the Helmholtz Association (#ERC-0013) and the German Federal Environment Agency (UBA, project UFOPLAN FKZ 3712 41 106).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the first compilation of information on the spatial distribution of scleractinian cold-water corals in the Gulf of Cádiz based on literature research and own observations (video footage, sediment samples). Scleractinian cold-water corals are widely distributed along the Spanish and Moroccan margins in the Gulf of Cádiz, where they are mainly associated with mud volcanoes, diapiric ridges, steep fault escarpments, and coral mounds. Dendrophyllia cornigera, Dendrophyllia alternata, Eguchipsammia cornucopia, Madrepora oculata and Lophelia pertusa are the most abundant reef-forming species. Today, they are almost solely present as isolated patches of fossil coral and coral rubble. The absence of living scleractinian corals is likely related to a reduced food supply caused by low productivity and diminished tidal effects. In contrast, during the past 48 kyr scleractinian corals were abundant in the Gulf of Cádiz, although their occurrence demonstrates no relationship with main climatic or oceanographic changes. Nevertheless, there exists a conspicuous relationship when the main species are considered separately. Dendrophylliids are associated with periods of relatively stable and warm conditions. The occurrence of L. pertusa mainly clusters within the last glacial when bottom current strength in the Gulf of Cádiz was enhanced and long-term stable conditions existed in terms of temperature. Madrepora oculata shows a higher tolerance to abrupt environmental changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic estimates of herring and blue whiting abundance were obtained during the surveys using the Simrad ER60 scientific echosounder. The allocation of NASC-values to herring, blue whiting and other acoustic targets were based on the composition of the trawl catches and the appearance of echo recordings. To estimate the abundance, the allocated NASC -values were averaged for ICES-squares (0.5° latitude by 1° longitude). For each statistical square, the unit area density of fish (rA) in number per square nautical mile (N*nm-2) was calculated using standard equations (Foote et al., 1987; Toresen et al., 1998). To estimate the total abundance of fish, the unit area abundance for each statistical square was multiplied by the number of square nautical miles in each statistical square and then summed for all the statistical squares within defined subareas and over the total area. Biomass estimation was calculated by multiplying abundance in numbers by the average weight of the fish in each statistical square then summing all squares within defined subareas and over the total area. The Norwegian BEAM soft-ware (Totland and Godø 2001) was used to make estimates of total biomass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding changes over time in the distribution of interacting native and invasive species that may be symptomatic of competitive exclusion is critical to identify the need for and effectiveness of management interventions. Occupancy models greatly increase the robustness of inference that can be made from presence/absence data when species are imperfectly detected, and recent novel developments allow for the quantification of the strength of interaction between pairs of species. We used a two-species multi-season occupancy model to quantify the impact of the invasive American mink on the native European mink in Spain through the analysis of their co-occurrence pattern over twelve years (2000 - 2011) in the entire Spanish range of European mink distribution, where both species were detected by live trapping but American mink were culled. We detected a negative temporal trend in the rate of occupancy of European mink and a simultaneous positive trend in the occupancy of American mink. The species co-occurred less often than expected and the native mink was more likely to become extinct from sites occupied by the invasive species. Removal of American mink resulted in a high probability of local extinction where it co-occurred with the endemic mink, but the overall increase in the probability of occupancy over the last decade indicates that the ongoing management is failing to halt its spread. More intensive culling effort where both species co-exist as well as in adjacent areas where the invasive American mink is found at high densities is required in order to stop thedecline of European mink.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arctic Ocean is warming at two to three times the global rate and is perceived to be a bellwether for ocean acidification. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs, and higher temperatures should lead to increased rates of planktonic primary production. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145-2,099?µatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continent of Europe has a complex geological history of successive tectonic events. Over several thousand million years these have formed the present day configuration of major tectonic provinces. A Continent Revealed unravels this history by presenting and interpreting the results of the European Geotraverse (EGT) a unique study of the continent of Europe and the first comprehensive cross section of continental lithosphere. This illustrated book has been put together by key workers in the EGT project. It uses the wealth of information yielded by the ten years of experiments, study centres and workshops to provide a concise and thought provoking account of the geological processes that created the European continent. It provides a summary of the European Geotraverse, and at the same time a starting point for further work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The "SESAME_IT3_ZooAbundance_0-50-100m_SZN" dataset contains data of mesozooplankton species composition and abundance (ind. m-3) from samples collected in the Sicily Channel in the early spring of 2008 (17,18 March) during the SESAME-WP2 cruise IT3. Samples were collected by vertical tows with a closing WP2 net (56 cm diameter, 200 µm mesh size) in the following depth layers: 100-200 m, 50-100 m, 0-50 m. Sampling was always performed in light hours with the exception of station S-IT3-03 where zooplankton were collected in dark hours. A flowmeter was applied to the mouth of the net, however, due to its malfunctioning, the volume of filtered seawater was calculated by multiplying the the area by the height of the sampled layer from winch readings. After collection, each sample was split in two halves (1/2) after careful mixing with graduated beakers. Half sample was immediately fixed and preserved in a formaldehyde-seawater solution (4% final concentration) for species composition and abundance. The other half sample was kept fresh for biomass measurements (data already submitted to SESAME database in different files).Here, only the zooplankton abundance of samples in the upper layers 0-50 m and 50-100 m are presented. The abundance data of the samples in the layer 50-100 m will be submitted later in a separate file. The volume of filtered seawater was estimated by multiplying the the area by the height of the sampled layer from winch readings. Identification and counts of specimens were performed on aliquots (1/20-1/5) of the fixed sample or on the total sample (half of the original sample) by using a graduate large-bore pipette. Copepods were identified to the species level and separated into females, males and juveniles (copepodites). All other taxa were identified at the species level when possible, or at higher taxonomic levels. Taxonomic identification was done according to the most relevant and updated taxonomic literature. Total mesozooplankton abundance was computed as sum of all specific abundances determined as explained above.