889 resultados para ETHYLENE-OCTENE COPOLYMERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interesting properties of thermoplastics elastomers can be combined with carbon nanotubes (CNT) for the development of large strain piezoresistive composites for sensor applications. Piezoresistive properties of the composites depend on CNT content, with the gauge factor increasing for concentrations around the percolation threshold, mechanical and electrical hysteresis. The SBS copolymer composition (butadiene/styrene ratio) influences the mechanical and electrical hysteresis of composites and, therefore, the piezoresistive response. This work reports on the electrical and mechanical response of CNT/SBS composites with 4%wt nanofiller content, due to the larger electromechanical response. C401 and C540 SBS copolymers with 80% and 60% butadiene content, respectively have been selected. The copolymer with larger amount of soft phase (C401) shows a rubber-like mechanical behavior, with mechanical hysteresis increasing linearly with strain until 100% strain. The copolymer with the larger amount of hard phase (C540) just shows rubber-like behavior for low strains. The piezoresistive sensibility is similar for both composites for low strains, with a GF≈ 5 for 5% strain. The electrical hysteresis shows opposite behavior than the mechanical hysteresis, increasing with strain for both composites, but with higher increase for softer copolymer, C401. The GF increases with increasing strain, but this increase is larger for composites with lower amounts of soft phase due to the distinct initial modulus and deformation of the soft and hard phases of the copolymer. The soft phase shows larger strain under a given stress than the harder phase and the conductive pathway rearrangements in the composites are different for both phases, the harder copolymer (C540) showing higher piezoresistive sensibility, GF≈ 18, for 20% strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoplastic elastomers based on a triblock copolymer styrene-butadiene-styrene (SBS) with different butadiene/styrene ratios, block structure and carbon nanotube (CNT) content were submitted to accelerated weathering in a Xenontest set up, in order to evaluate their stability to UV ageing. It was concluded that ageing mainly depends on butadiene/styrene ratio and block structure, with radial block structures exhibiting a faster ageing than linear block structures. Moreover, the presence of carbon nanotubes in the SBS copolymer slows down the ageing of the copolymer. The evaluation of the influence of ageing on the mechanical and electrical properties demonstrates that the mechanical degradation is higher for the C401 sample, which is the SBS sample with the largest butadiene content and a radial block structure. On the other hand, a copolymer derivate from SBS, the styrene-ethylene/butadiene-styrene (SEBS) sample, retains a maximum deformation of ~1000% after 80 h of accelerated ageing. The hydrophobicity of the samples decreases with increasing ageing time, the effect being larger for the samples with higher butadiene content. It is also verified that cytotoxicity increases with increasing UV ageing with the exception of SEBS, which remains not cytotoxic up to 80 h of accelerated ageing time, demonstrating its potential for applications involving exposition to environmental conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer blend membranes have been obtained consisting of a hydrophilic and a hydrophobic polymers distributed in co-continuous phases. In order to obtain stable membranes in aqueous environments, the hydrophilic phase is formed by a poly(hydrohyethyl acrylate), PHEA, network while the hydrophobic phase is formed by poly(vinylidene fluoride-co-trifluoroethylene) P(VDF-TrFE). To obtain the composites, in a first stage, P(VDF-TrFE) is blended with poly(ethylene oxyde) (PEO), the latter used as sacrificial porogen. P(VDF-TrFE)/PEO blend membranes were prepared by solvent casting at 70° followed by cooling to room temperature. Then PEO is removed from the membrane by immersion in water obtaining a P(VDF-TrFE) porous membrane. After removing of the PEO polymer, a P(VDF-TrFE) membrane results in which pores are collapsed. Nevertheless the pores reopen when a mixture of hydroxethyl acrylate (HEA) monomer, ethyleneglycol dimethacrylate (as crosslinker) and ethanol (as diluent) is absorbed in the membrane and subsequent polymerization yields hybrid hydrophilic/hydrophobic membranes with controlled porosity. The membranes are thus suitable for lithium-ion battery separator membranes and/or biostable supports for cell culture in biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215 M NaCl and 0.5 M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215 M NaCl system, all in 0.01 M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CdS nanoparticles (NPs) were synthesized using colloidal methods and incorporated within a diureasil hybrid matrix. The surface capping of the CdS NPs by 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) organic ligands during the incorporation of the NPs within the hybrid matrix has been investigated. The matrix is based on poly(ethylene oxide)/poly(propylene oxide) chains grafted to a siliceous skeleton through urea bonds and was produced by sol–gel process. Both alkaline and acidic catalysis of the sol–gel reaction were used to evaluate the effect of each organic ligand on the optical properties of the CdS NPs. The hybrid materials were characterized by absorption, steady-state and time-resolved photoluminescence spectroscopy and High Resolution Transmission Electron Microscopy (HR-TEM). The preservation of the optical properties of the CdS NPs within the diureasil hybrids was dependent on the experimental conditions used. Both organic ligands (APTMS and MPTMS) demonstrated to be crucial in avoiding the increase of size distribution and clustering of the NPs within the hybrid matrix. The use of organic ligands was also shown to influence the level of interaction between the hybrid host and the CdS NPs. The CdS NPs showed large Stokes shifts and long average lifetimes, both in colloidal solution and in the xerogels, due to the origin of the PL emission in surface states. The CdS NPs capped with MPTMS have lower PL lifetimes compared to the other xerogel samples but still larger than the CdS NPs in the original colloidal solution. An increase in PL lifetimes of the NPs after their incorporation within the hybrid matrix is related to interaction between the NPs and the hybrid host matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rise of bacterial resistance against important drugs threatens their clinical utility. Fluoroquinones, one of the most important classes of contemporary antibiotics has also reported to suffer bacterial resistance. Since the general mechanism of bacterial resistance against fluoroquinone antibiotics (e.g. ofloxacin) consists of target mutations resulting in reduced membrane permeability and increased efflux by the bacteria, strategies that could increase bacterial uptake and reduce efflux of the drug would provide effective treatment. In the present study, we have compared the efficiencies of ofloxacin delivered in the form of free drug (OFX) and as nanoparticles on bacterial uptake and antibacterial activity. Although both poly(lactic-co-glycolic acid) (OFX-PLGA) and methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (OFX-mPEG-PLGA) nanoformulations presented improved bacterial uptake and antibacterial activity against all the tested human bacterial pathogens, namely, Escherichia coli, Proteus vulgaris, Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus, OFX-mPEG-PLGA showed significantly higher bacterial uptake and antibacterial activity compared to OFX-PLGA. We have also found that mPEG-PLGA nanoencapsulation could significantly inhibit Bacillus subtilis resistance development against OFX.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000sodium sulfate aqueous two-phase systems containing 0.215 M NaCl and 0.5 M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000sodium sulfate0.215 M NaCl system, all in 0.01 M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solutesolvent interactions. The results obtained in the study show that solutesolvent interactions of nonionic organic compounds and proteins in polyethylene glycolsodium sulfate aqueous two-phase system change in the presence of NaCl additive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mangoes, cv. Imperial, were exposed, in post harvest, to the following methods of ripening: 1) sawdust burning; 2) alcohol vaporization; 3) calcium carbide (acetylene), 4) vapour of ethylene; and, 5) immersion in ethefon. All methods resulted in acceleration of ripening, when compared to controls. Calcium carbide, ethelene and ethefon were the best, methods. Alcohol vaporization also showed good results sawdust burning method showing low efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudi elaborat a partir d’una estada a la Universitat Nacional de Yokohama des de maig fins a mitjans de juny del 2006. S'ha estudiat el comportament fàssic i la preparació de sílica mesoporosa pels nous tensioactius fluorats d'estructura C8F17SO2(C3H7)N(C2H4O)nH (abreujat C8F17(EO)n. El tensioactiu C8F17(EO)n forma micel•les allargades i cristalls líquids en aigua, i per tant pot ser adequat per a la preparació de materials mesoporosos. Sílica mesoestructurada es va preparar pel mètode de precipitació per autoagregació cooperativa. Un estudi sistemàtic es va realitzar, investigant la influència de les concentracions de tensioactiu i precursor (TEOS), l’efecte del pH i de la longitud de cadena de poliòxid d’etilè. Els materials es van caracteritzar per raigs X a angle petit (SAXS), sorció de nitrògen i TEM. Els materials obtinguts presenten diàmetres de por petits i parets de por gruixudes. A més, aquests materials posseeixen altes superfícies específiques, que s’han obtingut emprant concentracions de tensioactiu petites, produint parets de por robustes sense microporositat significativa. La superfície específica es manté durant el procés de calcinació, malgrat un petit encongiment degut a l’entrecreuament de la sílica. Els materials de sílica obtinguts han mostrat ser significativament més robustos que altres materials similars descrits a la bibliografia, com la sílica MCM-41.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada al Departament d’Enginyeria Química del Massachusetts Institute of Technology entre abril i octubre del 2006. S’ha dissenyat i sintetitzat uns nous films polimèrics, amb aplicacions en l’àmbit de l’enginyeria de teixits, utilitzant la tècnica anomenada iCVD (initiated Chemical Vapor Deposition), prèviament desenvolupada pel grup receptor. Es tracta d’uns hidrogels superficials de gruix controlable, que incorporen un monòmer fluorat, el qual s’havia estudiat extensament en el grup d’origen. Aquest monòmer es caracteritza per reaccionar molt fàcilment amb pèptids, de manera que aquests queden units covalentment a la superfície. Diferents estratègies pel desenvolupament d’aquests copolímers han estat avaluades, tant des del punt de vista purament sintètic com de la pròpia aplicació. Les condicions de polimerització han estat optimitzades i els hidrogels s’han caracteritzat químicament per tècniques espectroscòpiques (FTIR, XPS), i físicament per angle de contacte i el·lipsometria. D’aquesta manera, s’ha estudiat la capacitat dels hidrogels d’absorbir aigua i alhora augmentar el seu gruix, depenent de la quantitat d’agent reticulant introduït i de la incorporació del nou monòmer. A continuació, s’han optimitzat les condicions de reacció d’aquestes superfícies amb pèptids que incorporen una molècula fluorescent, la qual permet detectar fàcilment per microscòpia de fluorescència si la reacció ha tingut lloc. Una vegada la plataforma ha estat posada a punt, s’han iniciat assajos cel·lulars tant amb fibroblasts embriònics de ratolí com amb cèl·lules humanes umbilicals. Els resultats preliminars suggereixen una morfologia diferent de les cèl·lules segons si es cultiven sobre films modificats amb pèptids que promouen l’adhesió cel·lular o sobre les seves seqüències permutades no actives. Però, el més interessant és que també s’han observat certes diferències depenent si els films contenen el component hidrogel o no, fet que suggeriria un paper actiu d’aquests noves superfícies en el comportament cel·lular.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colistin is a last resort's antibacterial treatment in critically ill patients with multi-drug resistant Gram-negative infections. As appropriate colistin exposure is the key for maximizing efficacy while minimizing toxicity, individualized dosing optimization guided by therapeutic drug monitoring is a top clinical priority. Objective of the present work was to develop a rapid and robust HPLC-MS/MS assay for quantification of colistin plasma concentrations. This novel methodology validated according to international standards simultaneously quantifies the microbiologically active compounds colistin A and B, plus the pro-drug colistin methanesulfonate (colistimethate, CMS). 96-well micro-Elution SPE on Oasis Hydrophilic-Lipophilic-Balanced (HLB) followed by direct analysis by Hydrophilic Interaction Liquid Chromatography (HILIC) with Ethylene Bridged Hybrid - BEH - Amide phase column coupled to tandem mass spectrometry allows a high-throughput with no significant matrix effect. The technique is highly sensitive (limit of quantification 0.014 and 0.006μg/mL for colistin A and B), precise (intra-/inter-assay CV 0.6-8.4%) and accurate (intra-/inter-assay deviation from nominal concentrations -4.4 to +6.3%) over the clinically relevant analytical range 0.05-20μg/mL. Colistin A and B in plasma and whole blood samples are reliably quantified over 48h at room temperature and at +4°C (<6% deviation from nominal values) and after three freeze-thaw cycles. Colistimethate acidic hydrolysis (1M H2SO4) to colistin A and B in plasma was completed in vitro after 15min of sonication while the pro-drug hydrolyzed spontaneously in plasma ex vivo after 4h at room temperature: this information is of utmost importance for interpretation of analytical results. Quantification is precise and accurate when using serum, citrated or EDTA plasma as biological matrix, while use of heparin plasma is not appropriate. This new analytical technique providing optimized quantification in real-life conditions of the microbiologically active compounds colistin A and B offers a highly efficient tool for routine therapeutic drug monitoring aimed at individualizing drug dosing against life-threatening infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the eye's specific anatomical and physiological conformation, the treatment of eye diseases is a real challenge for pharmaceutical therapy. The presence of efficient protective barriers (i.e., the conjunctival and corneal membranes) and protective mechanisms (i.e., blinking and nasolachrymal drainage) makes this organ particularly impervious to local drug therapy. To overcome these issues, numerous strategies have been envisioned using pharmaceutical technology. Many formulations currently on the market or still under development are emulsions or colloidal systems intended to enhance precorneal residence time and corneal penetration, causing a consequent increase in drug bioavailability after instillation. After a review of some recent developments in the field of cyclosporin A formulations for the eye, a novel micellar formulation of cyclosporine A based on a diblock methoxy-poly(ethylene glycol)-hexysubstituted poly(lactides) (MPEG-hexPLA) is described.