911 resultados para ENERGY-SYSTEMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps. The full AC power flow calculation included in the model takes into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33-bus distribution network and V2G is used to illustrate the good performance of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The operation of distribution networks has been facing changes with the implementation of smart grids and microgrids, and the increasing use of distributed generation. The specific case of distribution networks that accommodate residential buildings, small commerce, and distributed generation as the case of storage and PV generation lead to the concept of microgrids, in the cases that the network is able to operate in islanding mode. The microgrid operator in this context is able to manage the consumption and generation resources, also including demand response programs, obtaining profits from selling electricity to the main network. The present paper proposes a methodology for the energy resource scheduling considering power flow issues and the energy buying and selling from/to the main network in each bus of the microgrid. The case study uses a real distribution network with 25 bus, residential and commercial consumers, PV generation, and storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ever increasing need for extra functionality in a single embedded system demands for extra Input/Output (I/O) devices, which are usually connected externally and are expensive in terms of energy consumption. To reduce their energy consumption, these devices are equipped with power saving mechanisms. While I/O device scheduling for real-time (RT) systems with such power saving features has been studied in the past, the use of energy resources by these scheduling algorithms may be improved. Technology enhancements in the semiconductor industry have allowed the hardware vendors to reduce the device transition and energy overheads. The decrease in overhead of sleep transitions has opened new opportunities to further reduce the device energy consumption. In this research effort, we propose an intra-task device scheduling algorithm for real-time systems that wakes up a device on demand and reduces its active time while ensuring system schedulability. This intra-task device scheduling algorithm is extended for devices with multiple sleep states to further minimise the overall device energy consumption of the system. The proposed algorithms have less complexity when compared to the conservative inter-task device scheduling algorithms. The system model used relaxes some of the assumptions commonly made in the state-of-the-art that restrict their practical relevance. Apart from the aforementioned advantages, the proposed algorithms are shown to demonstrate the substantial energy savings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coarse Grained Reconfigurable Architectures (CGRAs) are emerging as enabling platforms to meet the high performance demanded by modern applications (e.g. 4G, CDMA, etc.). Recently proposed CGRAs offer time-multiplexing and dynamic applications parallelism to enhance device utilization and reduce energy consumption at the cost of additional memory (up to 50% area of the overall platform). To reduce the memory overheads, novel CGRAs employ either statistical compression, intermediate compact representation, or multicasting. Each compaction technique has different properties (i.e. compression ratio, decompression time and decompression energy) and is best suited for a particular class of applications. However, existing research only deals with these methods separately. Moreover, they only analyze the compaction ratio and do not evaluate the associated energy overheads. To tackle these issues, we propose a polymorphic compression architecture that interleaves these techniques in a unique platform. The proposed architecture allows each application to take advantage of a separate compression/decompression hierarchy (consisting of various types and implementations of hardware/software decoders) tailored to its needs. Simulation results, using different applications (FFT, Matrix multiplication, and WLAN), reveal that the choice of compression hierarchy has a significant impact on compression ratio (up to 52%), decompression energy (up to 4 orders of magnitude), and configuration time (from 33 n to 1.5 s) for the tested applications. Synthesis results reveal that introducing adaptivity incurs negligible additional overheads (1%) compared to the overall platform area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

in RoboCup 2007: Robot Soccer World Cup XI

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Article in Press, Corrected Proof

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies periodic gaits of multi-legged locomotion systems based on dynamic models. The purpose is to determine the system performance during walking and the best set of locomotion variables. For that objective the prescribed motion of the robot is completely characterized in terms of several locomotion variables such as gait, duty factor, body height, step length, stroke pitch, foot clearance, legs link lengths, foot-hip offset, body and legs mass and cycle time. In this perspective, we formulate three performance measures of the walking robot namely, the mean absolute energy, the mean power dispersion and the mean power lost in the joint actuators per walking distance. A set of model-based experiments reveals the influence of the locomotion variables in the proposed indices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the TURTLE project that aim to develop sub-systems with the capability of deep-sea long-term presence. Our motivation is to produce new robotic ascend and descend energy efficient technologies to be incorporated in robotic vehicles used by civil and military stakeholders for underwater operations. TURTLE contribute to the sustainable presence and operations in the sea bottom. Long term presence on sea bottom, increased awareness and operation capabilities in underwater sea and in particular on benthic deeps can only be achieved through the use of advanced technologies, leading to automation of operation, reducing operational costs and increasing efficiency of human activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Para a obtenção do Grau de Mestre em Energia e Bioenergia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high penetration of distributed energy resources (DER) in distribution networks and the competitive environment of electricity markets impose the use of new approaches in several domains. The network cost allocation, traditionally used in transmission networks, should be adapted and used in the distribution networks considering the specifications of the connected resources. The main goal is to develop a fairer methodology trying to distribute the distribution network use costs to all players which are using the network in each period. In this paper, a model considering different type of costs (fixed, losses, and congestion costs) is proposed comprising the use of a large set of DER, namely distributed generation (DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehicles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). The proposed model includes three distinct phases of operation. The first phase of the model consists in an economic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen's and Bialek's tracing algorithms are used and compared to evaluate the impact of each resource in the network. Finally, the MW-mile method is used in the third phase of the proposed model. A distribution network of 33 buses with large penetration of DER is used to illustrate the application of the proposed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electricity market restructuring, and its worldwide evolution into regional and even continental scales, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in a rising complexity in power systems operation. Several power system simulators have been developed in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex and constantly changing environment. The main contribution of this paper is given by the integration of several electricity market and power system models, respecting to the reality of different countries. This integration is done through the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The continuous development of Multi-Agent System for Competitive Electricity Markets platform provides the means for the exemplification of the usefulness of this ontology. A case study using the proposed multi-agent platform is presented, considering a scenario based on real data that simulates the European Electricity Market environment, and comparing its performance using different market mechanisms. The main goal is to demonstrate the advantages that the integration of various market models and simulation platforms have for the study of the electricity markets’ evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a decision support methodology for electricity market players’ bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity market players with strategic behavior capabilities to improve their outcomes from energy contracts’ negotiations. Although a diversity of tools that enable the study and simulation of electricity markets has emerged during the past few years, these are mostly directed to the analysis of market models and power systems’ technical constraints, making them suitable tools to support decisions of market operators and regulators. However, the equally important support of market negotiating players’ decisions is being highly neglected. The proposed model contributes to overcome the existing gap concerning effective and realistic decision support for electricity market negotiating entities. The proposed method is validated by realistic electricity market simulations using real data from the Iberian market operator—MIBEL. Results show that the proposed adaptive decision support features enable electricity market players to improve their outcomes from bilateral contracts’ negotiations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless body area networks (WBANs) are expected to play a significant role in smart healthcare systems. One of the most important attributes of WBANs is to increase network lifetime by introducing novel and low-power techniques on the energy-constrained sensor nodes. Medium access control (MAC) protocols play a significant role in determining the energy consumption in WBANs. Existing MAC protocols are unable to accommodate communication requirements in WBANs. There is a need to develop novel, scalable and reliable MAC protocols that must be able to address all these requirements in a reliable manner. In this special issue, we attracted high quality research and review papers on the recent advances in MAC protocols for WBANs.