956 resultados para ENERGY-PRODUCTION
Resumo:
The development of bioenergy on the basis of wood fuels has received considerable attention in the last decades. The combination of large forest resources and reliance on fossil fuels makes the issue of wood chips usage in Russia an actual topic for the analysis. The main objective of this study is to disclose the current state and perspectives for the production of wood chips and their usage as a source of energy in the North-West of Russia. The study utilizes an integrated approach to explore the market of wood chips on the basis of comprehensive analysis of documentation and expert opinions. The analysis of wood chips market was performed for eight regions of the North-West district of Russia within two major dimensions: its current state and perspectives in the nearest five years. The results of the study show a comprehensive picture of the wood chips market, including the potential for wood chips production, the specific features of production and consumption and the perspectives for the market development within the regions of the North-West district of Russia. The study demonstrated that the market of wood chips is underdeveloped in the North-West of Russia. The findings of the work may be used by forest companies for the strategic planning.
Resumo:
As the requirement for agriculture to be environmentally suitable there is a necessity to adopt indicators and methodologies approaching sustainability. In Brazil, biodiesel addition into diesel is mandatory and soybean oil is its main source. The material embodiment determines the convergence of inputs into the crop. Moreover, the material flows are necessary for any environmental analysis. This study evaluated distinct production scenarios, and also conventional versus GMO crops, through the material embodiment and energy analysis. GMO crops demanded less indirectly applied inputs. The energy balance showed linearity with yield, whereas for EROI, the increases in input and yield were not affected.
Resumo:
The study evaluated the energy performance of pig farming integrated with maize production in mechanized no-tillage system. In this proposed conception of integration, the swine excrement is used as fertilizers in the maize crop. The system was designed involving the activities associated to the pig management and maize production (soil management, cultivation and harvest). A one-year period of analysis was considered, enabling the production of three batches of pigs and two crops of maize. To evaluate the energy performance, three indicators were created: energy efficiency, use of non-renewable resources efficiency and cost of non-renewable energy to produce protein. The energy inputs are composed by the inputs and infrastructure used by the breeding of pigs and maize production, as well as the solar energy incident on the agroecosystem. The energy outputs are represented by the products (finished pigs and maize). The results obtained in the simulation indicates that the integration improves the energy performance of pig farms, with an increase in the energy efficiency (186%) as well as in the use of the non-renewable energy resources efficiency (352%), while reducing the cost of non-renewable energy to produce protein (‑58%).
Resumo:
The energy balance for the production of sunflower oil and cake was carried out during the agricultural and industrial stage phase, where it was considered a cold extraction by hydraulic pressing, with the plant location in a rural area with a radius of 30km range. Data on productivity was used in two varieties of sunflower (Helio 358 and Aguará 04) grown in different seasons (2007/2008, 2008/2009), under different irrigation levels. Data showed that irrigation resulted in an increase in productivity of both varieties, and the best response was observed for Aguará 04 variety. Moreover, the increased intensity of irrigation negatively affected the energy balance, reducing the ratio between energy produced and energy used in the production chain. The most significant inputs in the energy intake were fertilizer followed by diesel oil, when irrigation was not used for. When the irrigation technique was used, the most significant inputs, in order of representativeness, were: energy, fertilizer and equipment.
Resumo:
Citrus orchards are very important in Brazil, especially in São Paulo State, where occupy an area of 600,000 ha approximately. To identify sustainability degree of citrus production system, an energy analysis allows evaluating efficiency of direct and indirect applied inputs. Thus, this study aimed to evaluate citrus production system under energetic point of view, in which invested energy is paid back with citrus production; being compared within three scenarios for operational field efficiency. As result, by sensitivity analysis was determined that fuel was the main energy demander, followed by pesticides and fertilizers. In operational work capacity analysis, all combinations between efficiency (minimum, typical and maximum) and yield levels became positive in the seventh year, except for the combination minimum efficiency and 10 % less yield, positive in the eighth year. The best combination (maximum efficiency and 10 % more yield) has promoted investment payoff around the sixth and seventh year. By this study, it is possible to determine the total energy demand to produce citrus and indentify the applied inputs that need more attention by the decision-makers. Labor and seedlings can be ommited for further studies with citrus, since they were irrelevant. Management of agricultural machinery may pose an important role on decreasing environmental impact of citrus production.
Resumo:
Protein energy malnutrition (PEM) is a syndrome that often results in immunodeficiency coupled with pancytopenia. Hemopoietic tissue requires a high nutrient supply and the proliferation, differentiation and maturation of cells occur in a constant and balanced manner, sensitive to the demands of specific cell lineages and dependent on the stem cell population. In the present study, we evaluated the effect of PEM on some aspects of hemopoiesis, analyzing the cell cycle of bone marrow cells and the percentage of progenitor cells in the bone marrow. Two-month-old male Swiss mice (N = 7-9 per group) were submitted to PEM with a low-protein diet (4%) or were fed a control diet (20% protein) ad libitum. When the experimental group had lost about 20% of their original body weight after 14 days, we collected blood and bone marrow cells to determine the percentage of progenitor cells and the number of cells in each phase of the cell cycle. Animals of both groups were stimulated with 5-fluorouracil. Blood analysis, bone marrow cell composition and cell cycle evaluation was performed after 10 days. Malnourished animals presented anemia, reticulocytopenia and leukopenia. Their bone marrow was hypocellular and depleted of progenitor cells. Malnourished animals also presented more cells than normal in phases G0 and G1 of the cell cycle. Thus, we conclude that PEM leads to the depletion of progenitor hemopoietic populations and changes in cellular development. We suggest that these changes are some of the primary causes of pancytopenia in cases of PEM.
Resumo:
The objectives of this study were to determine if protein-energy malnutrition (PEM) could affect the hematologic response to lipopolysaccharide (LPS), the interleukin-1β (IL-1β) production, leukocyte migration, and blood leukocyte expression of CD11a/CD18. Two-month-old male Swiss mice were submitted to PEM (N = 30) with a low-protein diet (14 days) containing 4% protein, compared to 20% protein in the control group (N = 30). The total cellularity of blood, bone marrow, spleen, and bronchoalveolar lavage evaluated after the LPS stimulus indicated reduced number of total cells in all compartments studied and different kinetics of migration in malnourished animals. The in vitro migration assay showed reduced capacity of migration after the LPS stimulus in malnourished animals (45.7 ± 17.2 x 10(4) cells/mL) compared to control (69.6 ± 7.1 x 10(4) cells/mL, P ≤ 0.05), but there was no difference in CD11a/CD18 expression on the surface of blood leukocytes. In addition, the production of IL-1β in vivo after the LPS stimulus (180.7 pg·h-1·mL-1), and in vitro by bone marrow and spleen cells (41.6 ± 15.0 and 8.3 ± 4.0 pg/mL) was significantly lower in malnourished animals compared to control (591.1 pg·h-1·mL-1, 67.0 ± 23.0 and 17.5 ± 8.0 pg/mL, respectively, P ≤ 0.05). The reduced expression of IL-1β, together with the lower number of leukocytes in the central and peripheral compartments, different leukocyte kinetics, and reduced leukocyte migration capacity are factors that interfere with the capacity to mount an adequate immune response, being partly responsible for the immunodeficiency observed in PEM.
Resumo:
Master’s thesis Energy efficiency of glassmaking production gives description of glassmaking production and possible energy saving measures. Due to the high electricity and fuel prices the problem of rational energy utilization rises sharply. In addition the environmental issues also require a great attention. This work represented the feasible increasing of the furnace efficiency as the most productive activity. Thesis also provides a detail description of utilizing waste heat boiler. Also possible boiler characteristics are calculated and represented at the end of the thesis. As well as brief description of the feasibility of using this method of energy saving. The solution of this problem has a huge importance. Due to the increasing of energy costs and limits of raw materials, glassmaking industry should overcome on high efficiency operation mode. Especially, if such measures is making a significant contribution in the safety of environment.
Resumo:
Grass-based diets are of increasing social-economic importance in dairy cattle farming, but their low supply of glucogenic nutrients may limit the production of milk. Current evaluation systems that assess the energy supply and requirements are based on metabolisable energy (ME) or net energy (NE). These systems do not consider the characteristics of the energy delivering nutrients. In contrast, mechanistic models take into account the site of digestion, the type of nutrient absorbed and the type of nutrient required for production of milk constituents, and may therefore give a better prediction of supply and requirement of nutrients. The objective of the present study is to compare the ability of three energy evaluation systems, viz. the Dutch NE system, the agricultural and food research council (AFRC) ME system, and the feed into milk (FIM) ME system, and of a mechanistic model based on Dijkstra et al. [Simulation of digestion in cattle fed sugar cane: prediction of nutrient supply for milk production with locally available supplements. J. Agric. Sci., Cambridge 127, 247-60] and Mills et al. [A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation and application. J. Anim. Sci. 79, 1584-97] to predict the feed value of grass-based diets for milk production. The dataset for evaluation consists of 41 treatments of grass-based diets (at least 0.75 g ryegrass/g diet on DM basis). For each model, the predicted energy or nutrient supply, based on observed intake, was compared with predicted requirement based on observed performance. Assessment of the error of energy or nutrient supply relative to requirement is made by calculation of mean square prediction error (MSPE) and by concordance correlation coefficient (CCC). All energy evaluation systems predicted energy requirement to be lower (6-11%) than energy supply. The root MSPE (expressed as a proportion of the supply) was lowest for the mechanistic model (0.061), followed by the Dutch NE system (0.082), FIM ME system (0.097) and AFRCME system(0.118). For the energy evaluation systems, the error due to overall bias of prediction dominated the MSPE, whereas for the mechanistic model, proportionally 0.76 of MSPE was due to random variation. CCC analysis confirmed the higher accuracy and precision of the mechanistic model compared with energy evaluation systems. The error of prediction was positively related to grass protein content for the Dutch NE system, and was also positively related to grass DMI level for all models. In conclusion, current energy evaluation systems overestimate energy supply relative to energy requirement on grass-based diets for dairy cattle. The mechanistic model predicted glucogenic nutrients to limit performance of dairy cattle on grass-based diets, and proved to be more accurate and precise than the energy systems. The mechanistic model could be improved by allowing glucose maintenance and utilization requirements parameters to be variable. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Limit-feeding dry cows a high-energy diet may enable adequate energy intake to be sustained as parturition approaches, thus reducing the extent of negative energy balance after parturition. Our objective was to evaluate the effect of dry period feeding strategy on plasma concentrations of hormones and metabolites that reflect energy status. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition, paired by expected calving date, parity, and previous lactation milk yield, and randomly assigned to 1 of 2 dry-period diets formulated to meet nutrient requirements at ad libitum or limited intakes. All cows were fed the same diet for ad libitum intake after parturition. Prepartum dry matter intake (DMI) for limit-fed cows was 9.4 kg/d vs. 13.7 kg/d for cows fed ad libitum. During the dry period, limit-fed cows consumed enough feed to meet calculated energy requirements, and ad libitum-fed cows were in positive calculated net energy for lactation (NEL) balance (0.02 vs. 6.37 Mcal/d, respectively). After parturition, milk yield, milk protein concentration, DMI, body condition score, and body weight were not affected by the prepartum treatments. Cows limit fed during the dry period had a less-negative calculated energy balance during wk 1 postpartum. Milk fat concentration and yield were greater for the ad libitum treatment during wk 1 but were lower in wk 2 and 3 postpartum. Plasma insulin and glucose concentrations decreased after calving. Plasma insulin concentration was greater in ad libitum-fed cows on d -2 relative to calving, but did not differ by dietary treatment at other times. Plasma glucose concentrations were lower before and after parturition for cows limit-fed during the dry period. Plasma nonesterified fatty acid concentrations peaked after parturition on d 1 and 4 for the limit-fed and ad libitum treatments, respectively, and were greater for limit-fed cows on d -18, -9, -5, and -2. Plasma tumor necrosis factor-alpha concentrations did not differ by treatment in either the pre- or postpartum period, but tended to decrease after parturition. Apart from a reduction in body energy loss in the first week after calving, limit feeding a higher NEL diet during the dry period had little effect on intake and milk production during the first month of lactation.
Resumo:
This letter argues that the current controversy about whether Wbuoyancy, the power input due to the surface buoyancy fluxes, is large or small in the oceans stems from two distinct and incompatible views on how Wbuoyancy relates to the volume-integrated work of expansion/contraction B. The current prevailing view is that Wbuoyancy should be identified with the net value of B, which current theories estimate to be small. The alternative view, defended here, is that only the positive part of B, i.e., the one converting internal energy into mechanical energy, should enter the definition of Wbuoyancy, since the negative part of B is associated with the non-viscous dissipation of mechanical energy. Two indirect methods suggest that by contrast, the positive part of B is potentially large.