934 resultados para ELECTRODE-REACTION
Resumo:
A nitrate selective electrode was prepared for use in an aggresive medium (high acidic or basic concentration). It is demonstrated that the depending E graph with respect to pNO3- has not a Nernstian response in concentration acidic range upper 0.1 mol/L H2SO4. The observed behaviour is supposed to be due to the formation of a dimeric anion HN2O6-.
Resumo:
The determination of the total calcium in juice, syrups, and other products of the sugar industry is investigated. Total calcium and free calcium is determinated by AAS and employing Ca-selective electrode respectively. A coefficient is obtained for the relation of total calcium with respect to free calcium. The coefficient is employed to determine the content of total calcium in accordance with the following equation.
Resumo:
This paper brings an active and provocative area of current research. It describes the investigation of electron transfer (ET) chemistry in general and ET reactions results in DNA in particular. Two DNA intercalating molecules were used: Ethidium Bromide as the donor (D) and Methyl-Viologen as the acceptor (A), the former intercalated between DNA bases and the latter in its surface. Using the Perrin model and fluorescence quenching measurements the distance of electron migration, herein considered to be the linear spacing between donor and acceptor molecule along the DNA molecule, was obtained. A value of 22.6 (± 1.1) angstroms for the distance and a number of 6.6 base pairs between donor and acceptor were found. In current literature the values found were 26 angstroms and almost 8 base pairs. DNA electron transfer is considered to be mediated by through-space interactions between the p-electron-containing base pairs.
Resumo:
This work is devoted to the development of numerical method to deal with convection diffusion dominated problem with reaction term, non - stiff chemical reaction and stiff chemical reaction. The technique is based on the unifying Eulerian - Lagrangian schemes (particle transport method) under the framework of operator splitting method. In the computational domain, the particle set is assigned to solve the convection reaction subproblem along the characteristic curves created by convective velocity. At each time step, convection, diffusion and reaction terms are solved separately by assuming that, each phenomenon occurs separately in a sequential fashion. Moreover, adaptivities and projection techniques are used to add particles in the regions of high gradients (steep fronts) and discontinuities and transfer a solution from particle set onto grid point respectively. The numerical results show that, the particle transport method has improved the solutions of CDR problems. Nevertheless, the method is time consumer when compared with other classical technique e.g., method of lines. Apart from this advantage, the particle transport method can be used to simulate problems that involve movingsteep/smooth fronts such as separation of two or more elements in the system.
Resumo:
This work describes the development of an alternative acetate bath for the electrochemical codeposition of Ni-Cu-Fe electrodes at low pH that is stable for several weeks and produces electrodes with good performance for chlor-alkali electrolysis. Physical characterization of the electrode surface was made using X ray absorption spectroscopy (XAS), scanning electron microscopy (SEM) and energy dispersive analysis (EDX). The evaluation of the material as electrocatalyst for the hydrogen evolution reaction (her) was carried out in brine solution (160 g L-1 NaCl + 150 g L-1 NaOH) at different temperatures through steady-state polarization curves. The Ni-Cu-Fe electrodes obtained with this bath have shown low overpotentials for the her, around 0.150 V at 353 K, and good stability under continuous long-term operation for 260 hours. One positive aspect of this cathode is that the polarization behavior of the material shows only one Tafel slope over the temperature range of 298 - 353 K.
Resumo:
The porous mixed oxide SiO2/TiO2/Sb2O5 obtained by the sol-gel processing method presented a good ion exchange property and a high exchange capacity towards the Li+, Na+ and K+ ions. In the H+/M+ ion exchange process, the H+ / Na+ could be described as presenting an ideal character. The ion exchange equilibria of Li+ and K+ were quantitatively described with the help of the model of fixed tetradentate centers. The results of simulation evidence that for the H+ / Li+ exchange the usual situation takes place: the affinity of the material to the Li+ ions is decreased with increasing the degree of ion exchange. On the contrary, for K+ the effects of positive cooperativity, that facilitate the H+ / K+ exchange, were revealed.
Resumo:
A L-ascorbic acid biosensor based on ascorbate oxidase has been developed. The enzyme was extracted from the mesocarp of cucumber (Cucumis sativus) by using 0.05 mol L-1 phosphate buffer, pH 5.8 containing 0.5 mol L-1 NaCl. After the dialysis versus phosphate buffer 0.05 mol L-1 pH 5.8, the enzyme was immobilized onto nylon net through glutaraldehyde covalent bond. The membrane was coupled to an O2 electrode and the yielding reaction monitored by oxygen depletion at -600 mV using flow injection analysis optimized to 0.1 mol L-1 phosphate buffer pH 5.8, as the carrier solution and flow-rate of 0.5 mL min-1. The ascorbic acid calibration curve was linear from 1.2x10-4 to 1.0x10-3 mol L-1. The evaluation of biosensor lifetime leads to 500 injections. Commercial pharmaceutical samples were analyzed with the proposed method and the results were compared with those obtained by high-performance liquid chromatography (HPLC).
Resumo:
An amperometric sensor was constructed, by using humic acids to immobilize Fe3+ ions on a carbon paste electrode (CPE-HA-Fe), and used for ascorbic acid (H2A) determination. The cyclic voltammogram of the electrode showed electrochemical response due to the Fe3+/Fe2+ couple at E1/2=+0.78 V vs SCE, using 0.5 mol L-1 KCl and 0.2 mol L-1 acetate/0.020 mol L-1 phosphate buffer, at pH = 5.4, as supporting electrolyte. When H2A is added to the electrolyte solution it is observed an oxidation process. The oxidation current, obtained by chronoamperommetry at +0.87 V vs SCE, is proportional to the concentration, represented by the equation I(µA) = 7.6286 [H2A] (mmol L-1) + 1.9583, r = 0.9996, for concentrations between 0.0 and 1.4 mmol L-1. The electrode showed high stability and was used for H2A determination in a natural orange juice.
Resumo:
In order to a better characterization of a graphite-polyurethane composite intended to be used as a voltammetric sensor, the performance in a square wave voltammetric procedure was investigated. Using hydroquinone (HQ) as a probe, the electrode showed to be useful in square wave voltammetry with limit of detection of 0.28 µmol L-1, with recoveries between 99.1 and 101.5%. The results of the proposed method agreed with HPLC ones within 95% confidence level.
Resumo:
The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol for determination of Cu(II) ions in sugar cane spirit (cachaça) is described, based on differential pulse anodic stripping voltammetry (DPASV) procedure. The Cu(II) oxidation peak was observed at 0.03 V (vs. SCE) in phosphate solution (pH 3.0). The results were obtained using optimised conditions such as 100 mV pulse amplitude, 3 min accumulation time, 25 mV s-1 scan rate in phosphate solution pH 3.0, resulting in a linear dynamic range from 8.0 x 10-7 to 1.0 x 10-5 mol L-1 Cu(II) and a limit of detection 2.0 x10-7 mol L-1. Cu(II) spiked in a cachaça sample was determined with 102.5 % mean recovery at mmol L-1 level. Interference from other metallic cations present in the sample was avoided by the standard addition procedure.
Resumo:
Electrode kinetics and complex formation of Zn(II) using doxycycline, chlortetracycline, oxytetracycline, tetracycline, minocycline, amoxicillin, chloramphenicol and cephaloglycin were reported at pH = 7.30 ± 0.01 in = 1.0 molL-1 NaClO4 used as supporting electrolyte at 25.0°C. Kinetic parameters viz. transfer coefficient (α), degree of irreversibility (λ) and rate constant (k) were determined. The study showed that 'Transition state' behaves between reactant (O) and product (R) response to applied potential. The stability constants varied from 2.14 to 10.31 showing that these drugs or their complexes could be used against Zn toxicity.
Resumo:
A novel sensitive and relatively selective kinetic method is presented for the determination of V(V), based on its catalytic effect on the oxidation reaction of Ponceau Xylydine by potassium bromate in presence of 5-sulfosalicylic acid (SSA) as activator. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of Ponceau Xylydine at 640 nm between 0.5 to 7 min (the fixed time method) in H3PO4 medium at 25ºC. The effect of various parameters such as concentrations of H3PO4, SSA, bromate and Ponceau Xylydine, temperature and ionic strength on the rate of net reaction were studied. The method is free from most interferences, especially from large amounts of V(IV). The decrease in absorbance is proportional to the concentration of V(V) over the entire concentration range tested (1-15 ng mL−1) with a detection limit of 0.46 ng mL-1 (according to statistical 3Sblank/k criterion) and a coefficient of variation (CV) of 1.8% (for ten replicate measurement at 95% confidence level). The proposed method suffers few interferences such as Cr(VI) and Hg(II) ions. The method was successfully applied to the determination of V(V) in tap water, drinking water, bottled mineral water samples and a certified standard reference material such as SRM-1640 with satisfactory results. The vanadium contents of water samples were also determined by FAAS for a comparison. The recovery of spiked vanadium(V) was found to be quantitative and the reproducibility was satisfactory. It was observed that the results of the SRM 1640 were in good agreement with the certified value.
Resumo:
The damage and the resistance levels of cultivars and accessions of common beans rescued in the South and mountain regions of Espírito Santo State, Brazil, to M. incognita race 3 and M. javanica parasitism were evaluated under a greenhouse. Four rescued bean genotypes ("FORT-10", "FORT-13", "FORT-16" and "FORT-19") and 2 commercial cultivars: "Pérola", and "Aporé", were tested. The cultivar "Rico-23" was included as standard of susceptibility to nematodes and non-inoculated plants constituted the control. Thus, the experiment was carried out in a completely randomized design in 3 (treatments considering nematodes) x 7 (genotypes and bean cultivars) factorial arrangement, with 7 replicates. Data were measured at 50 days after plant inoculation. For damage quantification, the following variables were evaluated: plant height (PHE), number of nodes (NNO), number of trifoliate leaves (NRT), fresh matter weight (FWE) and dry matter weight (DWE) of shoots, root weight (RWE), number of root nodules (NRO) and final population (FPO) of nematodes per root system. There were no significant differences between the effects caused by M. incognita and M. javanica, but both species showed inferior values of PHE, NNO, NRT, RWE, FWE and DWE compared to controls. Concerning the levels of resistance of bean plants to M. incognita, the genotypes "FORT-10", "FORT-13", "Aporé" and "FORT-16" behaved as moderately resistant, the cultivars "Rico 23" and "Pérola" low resistant, and the genotype "FORT-19" as highly susceptible. When parasitized by M. javanica, the beans "FORT-19", "Rico-23", "FORT-16" and "FORT-13" were low resistant, "Pérola" and "Aporé" susceptible and "FORT-10" highly susceptible.
Resumo:
The method of preserving detached wheat leaves in Petri dish was used for the inoculation and development of the fungus Puccinia triticina, the causal agent of wheat leaf rust. The reaction of 26 wheat cultivars was compared by using seedlings cultivated in pots (in vivo) and detached leaves (in vitro) inoculated with four physiological races of the pathogen. After inoculation, the material was kept in a growth chamber for 15 days. The reaction was evaluated on the 15th day after inoculation. Results for each race in the evaluated genotypes confirmed the efficiency of the detached leaf method in assessing the reaction of wheat cultivars.