923 resultados para Direct method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce mémoire présente deux algorithmes qui ont pour but d’améliorer la précision de l’estimation de la direction d’arrivée de sources sonores et de leurs échos. Le premier algorithme, qui s’appelle la méthode par élimination des sources, permet d’améliorer l’estimation de la direction d’arrivée d’échos qui sont noyés dans le bruit. Le second, qui s’appelle Multiple Signal Classification à focalisation de phase, utilise l’information dans la phase à chaque fréquence pour déterminer la direction d’arrivée de sources à large bande. La combinaison de ces deux algorithmes permet de localiser des échos dont la puissance est de -17 dB par rapport à la source principale, jusqu’à un rapport échoà- bruit de -15 dB. Ce mémoire présente aussi des mesures expérimentales qui viennent confirmer les résultats obtenus lors de simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, there has been considerable interest in solving viscoelastic problems in 3D particularly with the improvement in modern computing power. In many applications the emphasis has been on economical algorithms which can cope with the extra complexity that the third dimension brings. Storage and computer time are of the essence. The advantage of the finite volume formulation is that a large amount of memory space is not required. Iterative methods rather than direct methods can be used to solve the resulting linear systems efficiently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the application of time-reversed electromagnetic wave propagation to transmit energy in a wireless power transmission system. “Time reversal” is a signal focusing method that exploits the time reversal invariance of the lossless wave equation to direct signals onto a single point inside a complex scattering environment. In this work, we explore the properties of time reversed microwave pulses in a low-loss ray-chaotic chamber. We measure the spatial profile of the collapsing wavefront around the target antenna, and demonstrate that time reversal can be used to transfer energy to a receiver in motion. We demonstrate how nonlinear elements can be controlled to selectively focus on one target out of a group. Finally, we discuss the design of a rectenna for use in a time reversal system. We explore the implication of these results, and how they may be applied in future technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase change problems arise in many practical applications such as air-conditioning and refrigeration, thermal energy storage systems and thermal management of electronic devices. The physical phenomenon in such applications are complex and are often difficult to be studied in detail with the help of only experimental techniques. The efforts to improve computational techniques for analyzing two-phase flow problems with phase change are therefore gaining momentum. The development of numerical methods for multiphase flow has been motivated generally by the need to account more accurately for (a) large topological changes such as phase breakup and merging, (b) sharp representation of the interface and its discontinuous properties and (c) accurate and mass conserving motion of the interface. In addition to these considerations, numerical simulation of multiphase flow with phase change introduces additional challenges related to discontinuities in the velocity and the temperature fields. Moreover, the velocity field is no longer divergence free. For phase change problems, the focus of developmental efforts has thus been on numerically attaining a proper conservation of energy across the interface in addition to the accurate treatment of fluxes of mass and momentum conservation as well as the associated interface advection. Among the initial efforts related to the simulation of bubble growth in film boiling applications the work in \cite{Welch1995} was based on the interface tracking method using a moving unstructured mesh. That study considered moderate interfacial deformations. A similar problem was subsequently studied using moving, boundary fitted grids \cite{Son1997}, again for regimes of relatively small topological changes. A hybrid interface tracking method with a moving interface grid overlapping a static Eulerian grid was developed \cite{Juric1998} for the computation of a range of phase change problems including, three-dimensional film boiling \cite{esmaeeli2004computations}, multimode two-dimensional pool boiling \cite{Esmaeeli2004} and film boiling on horizontal cylinders \cite{Esmaeeli2004a}. The handling of interface merging and pinch off however remains a challenge with methods that explicitly track the interface. As large topological changes are crucial for phase change problems, attention has turned in recent years to front capturing methods utilizing implicit interfaces that are more effective in treating complex interface deformations. The VOF (Volume of Fluid) method was adopted in \cite{Welch2000} to simulate the one-dimensional Stefan problem and the two-dimensional film boiling problem. The approach employed a specific model for mass transfer across the interface involving a mass source term within cells containing the interface. This VOF based approach was further coupled with the level set method in \cite{Son1998}, employing a smeared-out Heaviside function to avoid the numerical instability related to the source term. The coupled level set, volume of fluid method and the diffused interface approach was used for film boiling with water and R134a at the near critical pressure condition \cite{Tomar2005}. The effect of superheat and saturation pressure on the frequency of bubble formation were analyzed with this approach. The work in \cite{Gibou2007} used the ghost fluid and the level set methods for phase change simulations. A similar approach was adopted in \cite{Son2008} to study various boiling problems including three-dimensional film boiling on a horizontal cylinder, nucleate boiling in microcavity \cite{lee2010numerical} and flow boiling in a finned microchannel \cite{lee2012direct}. The work in \cite{tanguy2007level} also used the ghost fluid method and proposed an improved algorithm based on enforcing continuity and divergence-free condition for the extended velocity field. The work in \cite{sato2013sharp} employed a multiphase model based on volume fraction with interface sharpening scheme and derived a phase change model based on local interface area and mass flux. Among the front capturing methods, sharp interface methods have been found to be particularly effective both for implementing sharp jumps and for resolving the interfacial velocity field. However, sharp velocity jumps render the solution susceptible to erroneous oscillations in pressure and also lead to spurious interface velocities. To implement phase change, the work in \cite{Hardt2008} employed point mass source terms derived from a physical basis for the evaporating mass flux. To avoid numerical instability, the authors smeared the mass source by solving a pseudo time-step diffusion equation. This measure however led to mass conservation issues due to non-symmetric integration over the distributed mass source region. The problem of spurious pressure oscillations related to point mass sources was also investigated by \cite{Schlottke2008}. Although their method is based on the VOF, the large pressure peaks associated with sharp mass source was observed to be similar to that for the interface tracking method. Such spurious fluctuation in pressure are essentially undesirable because the effect is globally transmitted in incompressible flow. Hence, the pressure field formation due to phase change need to be implemented with greater accuracy than is reported in current literature. The accuracy of interface advection in the presence of interfacial mass flux (mass flux conservation) has been discussed in \cite{tanguy2007level,tanguy2014benchmarks}. The authors found that the method of extending one phase velocity to entire domain suggested by Nguyen et al. in \cite{nguyen2001boundary} suffers from a lack of mass flux conservation when the density difference is high. To improve the solution, the authors impose a divergence-free condition for the extended velocity field by solving a constant coefficient Poisson equation. The approach has shown good results with enclosed bubble or droplet but is not general for more complex flow and requires additional solution of the linear system of equations. In current thesis, an improved approach that addresses both the numerical oscillation of pressure and the spurious interface velocity field is presented by featuring (i) continuous velocity and density fields within a thin interfacial region and (ii) temporal velocity correction steps to avoid unphysical pressure source term. Also I propose a general (iii) mass flux projection correction for improved mass flux conservation. The pressure and the temperature gradient jump condition are treated sharply. A series of one-dimensional and two-dimensional problems are solved to verify the performance of the new algorithm. Two-dimensional and cylindrical film boiling problems are also demonstrated and show good qualitative agreement with the experimental observations and heat transfer correlations. Finally, a study on Taylor bubble flow with heat transfer and phase change in a small vertical tube in axisymmetric coordinates is carried out using the new multiphase, phase change method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many applications, including communications, test and measurement, and radar, require the generation of signals with a high degree of spectral purity. One method for producing tunable, low-noise source signals is to combine the outputs of multiple direct digital synthesizers (DDSs) arranged in a parallel configuration. In such an approach, if all noise is uncorrelated across channels, the noise will decrease relative to the combined signal power, resulting in a reduction of sideband noise and an increase in SNR. However, in any real array, the broadband noise and spurious components will be correlated to some degree, limiting the gains achieved by parallelization. This thesis examines the potential performance benefits that may arise from using an array of DDSs, with a focus on several types of common DDS errors, including phase noise, phase truncation spurs, quantization noise spurs, and quantizer nonlinearity spurs. Measurements to determine the level of correlation among DDS channels were made on a custom 14-channel DDS testbed. The investigation of the phase noise of a DDS array indicates that the contribution to the phase noise from the DACs can be decreased to a desired level by using a large enough number of channels. In such a system, the phase noise qualities of the source clock and the system cost and complexity will be the main limitations on the phase noise of the DDS array. The study of phase truncation spurs suggests that, at least in our system, the phase truncation spurs are uncorrelated, contrary to the theoretical prediction. We believe this decorrelation is due to the existence of an unidentified mechanism in our DDS array that is unaccounted for in our current operational DDS model. This mechanism, likely due to some timing element in the FPGA, causes some randomness in the relative phases of the truncation spurs from channel to channel each time the DDS array is powered up. This randomness decorrelates the phase truncation spurs, opening the potential for SFDR gain from using a DDS array. The analysis of the correlation of quantization noise spurs in an array of DDSs shows that the total quantization noise power of each DDS channel is uncorrelated for nearly all values of DAC output bits. This suggests that a near N gain in SQNR is possible for an N-channel array of DDSs. This gain will be most apparent for low-bit DACs in which quantization noise is notably higher than the thermal noise contribution. Lastly, the measurements of the correlation of quantizer nonlinearity spurs demonstrate that the second and third harmonics are highly correlated across channels for all frequencies tested. This means that there is no benefit to using an array of DDSs for the problems of in-band quantizer nonlinearities. As a result, alternate methods of harmonic spur management must be employed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time-mean Argo float displacements and the World Ocean Atlas 2009 temperature–salinity climatology are used to obtain the total, top to bottom, mass transports. Outside of an equatorial band, the total transports are the sum of the vertical integrals of geostrophic- and wind-driven Ekman currents. However, these transports are generally divergent, and to obtain a mass conserving circulation, a Poisson equation is solved for the streamfunction with Dirichlet boundary conditions at solid boundaries. The value of the streamfunction on islands is also part of the unknowns. This study presents and discusses an energetic circulation in three basins: the North Atlantic, the North Pacific, and the Southern Ocean. This global method leads to new estimations of the time-mean western Eulerian boundary current transports maxima of 97 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) at 60°W for the Gulf Stream, 84 Sv at 157°E for the Kuroshio, 80 Sv for the Agulhas Current between 32° and 36°S, and finally 175 Sv for the Antarctic Circumpolar Current at Drake Passage. Although the large-scale structure and boundary of the interior gyres is well predicted by the Sverdrup relation, the transports derived from the wind stress curl are lower than the observed transports in the interior by roughly a factor of 2, suggesting an important contribution of the bottom torques. With additional Argo displacement data, the errors caused by the presence of remaining transient terms at the 1000-db reference level will continue to decrease, allowing this method to produce increasingly accurate results in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Rabies causes 55, 000 annual human deaths globally and about 10,000 people are exposed annually in Nigeria. Diagnosis of animal rabies in most African countries has been by direct microscopic examination. In Nigeria, the Seller’s stain test (SST) was employed until 2009. Before then, both SST and dFAT were used concurrently until the dFAT became the only standard method. Objective: This study was designed to assess the sensitivity and specificity of the SST in relation to the ‘gold standard’ dFAT in diagnosis of rabies in Nigeria. Methods: A total of 88 animal specimens submitted to the Rabies National Reference Laboratory, Nigeria were routinely tested for rabies by SST and dFAT. Results: Overall, 65.9% of the specimens were positive for rabies by SST, while 81.8% were positive by dFAT. The sensitivity of SST in relation to the gold standard dFAT was 81.0% (95% CIs; 69.7% - 88.6%), while the specificity was 100% (95% CIs; 76% - 100%). Conclusion: The relatively low sensitivity of the SST observed in this study calls for its replacement with the dFAT for accurate diagnosis of rabies and timely decisions on administration of PEP to prevent untimely deaths of exposed humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethernet connections, which are widely used in many computer networks, can suffer from electromagnetic interference. Typically, a degradation of the data transmission rate can be perceived as electromagnetic disturbances lead to corruption of data frames on the network media. In this paper a software-based measuring method is presented, which allows a direct assessment of the effects on the link layer. The results can directly be linked to the physical interaction without the influence of software related effects on higher protocol layers. This gives a simple tool for a quantitative analysis of the disturbance of an Ethernet connection based on time domain data. An example is shown, how the data can be used for further investigation of mechanisms and detection of intentional electromagnetic attacks. © 2015 Author(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been developed for the direct determination of Cu, Cd, Ni and Pb in aquatic humic substances (AHS) by graphite furnace atomic absorption spectrometry. AHS were isolated from water samples rich in organic matter, collected in the Brazilian Ecological Parks. All analytical curves presented good linear correlation coefficient. The limits of detection and quantification were in the ranges 2.5-16.7 mu g g(-1) and 8.5-50.0 mu g g(-1), respectively. The accuracy was determined using recovery tests, and for all analytes recovery percentages ranged from 93 - 98 %, with a relative standard deviation less than 4 %. The results indicated that the proposed method is a suitable alternative for the direct determination of metals in AHS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Therefore the understanding and proper evaluation of the flow and mixing behaviour at microscale becomes a very important issue. In this study, the diffusion behaviour of two reacting solutions of HCI and NaOH were directly observed in a glass/polydimethylsiloxane microfluidic device using adaptive coatings based on the conductive polymer polyaniline that are covalently attached to the microchannel walls. The two liquid streams were combined at the junction of a Y-shaped microchannel, and allowed to diffuse into each other and react. The results showed excellent correlation between optical observation of the diffusion process and the numerical results. A numerical model which is based on finite volume method (FVM) discretisation of steady Navier-Stokes (fluid flow) equations and mass transport equations without reactions was used to calculate the flow variables at discrete points in the finite volume mesh element. The high correlation between theory and practical data indicates the potential of such coatings to monitor diffusion processes and mixing behaviour inside microfluidic channels in a dye free environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organismal development, homeostasis, and pathology are rooted in inherently probabilistic events. From gene expression to cellular differentiation, rates and likelihoods shape the form and function of biology. Processes ranging from growth to cancer homeostasis to reprogramming of stem cells all require transitions between distinct phenotypic states, and these occur at defined rates. Therefore, measuring the fidelity and dynamics with which such transitions occur is central to understanding natural biological phenomena and is critical for therapeutic interventions.

While these processes may produce robust population-level behaviors, decisions are made by individual cells. In certain circumstances, these minuscule computing units effectively roll dice to determine their fate. And while the 'omics' era has provided vast amounts of data on what these populations are doing en masse, the behaviors of the underlying units of these processes get washed out in averages.

Therefore, in order to understand the behavior of a sample of cells, it is critical to reveal how its underlying components, or mixture of cells in distinct states, each contribute to the overall phenotype. As such, we must first define what states exist in the population, determine what controls the stability of these states, and measure in high dimensionality the dynamics with which these cells transition between states.

To address a specific example of this general problem, we investigate the heterogeneity and dynamics of mouse embryonic stem cells (mESCs). While a number of reports have identified particular genes in ES cells that switch between 'high' and 'low' metastable expression states in culture, it remains unclear how levels of many of these regulators combine to form states in transcriptional space. Using a method called single molecule mRNA fluorescent in situ hybridization (smFISH), we quantitatively measure and fit distributions of core pluripotency regulators in single cells, identifying a wide range of variabilities between genes, but each explained by a simple model of bursty transcription. From this data, we also observed that strongly bimodal genes appear to be co-expressed, effectively limiting the occupancy of transcriptional space to two primary states across genes studied here. However, these states also appear punctuated by the conditional expression of the most highly variable genes, potentially defining smaller substates of pluripotency.

Having defined the transcriptional states, we next asked what might control their stability or persistence. Surprisingly, we found that DNA methylation, a mark normally associated with irreversible developmental progression, was itself differentially regulated between these two primary states. Furthermore, both acute or chronic inhibition of DNA methyltransferase activity led to reduced heterogeneity among the population, suggesting that metastability can be modulated by this strong epigenetic mark.

Finally, because understanding the dynamics of state transitions is fundamental to a variety of biological problems, we sought to develop a high-throughput method for the identification of cellular trajectories without the need for cell-line engineering. We achieved this by combining cell-lineage information gathered from time-lapse microscopy with endpoint smFISH for measurements of final expression states. Applying a simple mathematical framework to these lineage-tree associated expression states enables the inference of dynamic transitions. We apply our novel approach in order to infer temporal sequences of events, quantitative switching rates, and network topology among a set of ESC states.

Taken together, we identify distinct expression states in ES cells, gain fundamental insight into how a strong epigenetic modifier enforces the stability of these states, and develop and apply a new method for the identification of cellular trajectories using scalable in situ readouts of cellular state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we aim at contributing to the new field of research that intends to bring up-to-date the tools and statistics currently used to look to the current reality given by Global Value Chains (GVC) in international trade and Foreign Direct Investment (FDI). Namely, we make use of the most recent data published by the World Input-Output Database to suggest indicators to measure the participation and net gains of countries by being a part of GVC; and use those indicators in a pooled-regression model to estimate determinants of FDI stocks in Organization for Economic Co-operation and Development (OECD)-member countries. We conclude that one of the measures proposed proves to be statistically significant in explaining the bilateral stock of FDI in OECD countries, meaning that the higher the transnational income generated between two given countries by GVC, taken as a proxy to the participation of those countries in GVC, the higher one could expect the FDI entering those countries to be. The regression also shows the negative impact of the global financial crisis that started in 2009 in the world’s bilateral FDI stocks and, additionally, the particular and significant role played by the People’s Republic of China in determining these stocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovative approach to quantify interest rate sensitivities of emerging market corporates is proposed. Our focus is centered at price sensitivity of modeled investment grade and high yield portfolios to changes in the present value of modeled portfolios composed of safe-haven assets, which define risk-free interest rates. Our methodology is based on blended yield indexes. Modeled investment horizons are always kept above one year thus allowing to derive empirical implications for practical strategies of interest rate risk management in the banking book. As our study spans over the period 2002 – 2015, it covers interest rate sensitivity of assets under the pre-crisis, crisis, and post-crisis phases of the economic cycles. We demonstrate that the emerging market corporate bonds both, investment grade and high yield types, depending on the phase of a business cycle exhibit diverse regimes of sensitivity to interest rate changes. We observe switching from a direct positive sensitivity under the normal pre-crisis market conditions to an inverted negative sensitivity during distressed turmoil of the recent financial crisis, and than back to direct positive but weaker sensitivity under new normal post-crisis conjuncture. Our unusual blended yield-based approach allows us to present theoretical explanations of such phenomena from economics point of view and helps us to solve an old controversy regarding positive or negative responses of credit spreads to interest rates. We present numerical quantification of sensitivities, which corroborate with our conclusion that hedging of interest rate risk ought to be a dynamic process linked to the phases of business cycles as we evidence a binary-like behavior of interest rate sensitivities along the economic time. Our findings allow banks and financial institutions for approaching downside risk management and optimizing economic capital under Basel III regulatory capital rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.