851 resultados para Direct effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of diluted magnetic semiconductor (DMS) superlattices under an in-plane magnetic field is studied within the framework of the effective-mass theory; the strain effect is also included in the calculation. The numerical results show that an increase of the in-plane magnetic field renders the DMS superlattice from the direct band-gap system to the indirect band-gap system, and spatially separates the electron and the hole by changing the type-I band alignment to a type-II band alignment. The optical transition probability changes from type I to type II and back to type I like at large magnetic field. This phenomenon arises from the interplay among the superlattice potential profile, the external magnetic field, and the sp-d exchange interaction between the carriers and the magnetic ions. The shear strain induces a strong coupling of the light- and heavy-hole states and a transition of the hole ground states from "light"-hole to "heavy"-hole-like states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used the transverse correlated properties of the entangled photon pairs generated in the process of spontaneous parametric down-conversion, which is pumped by a femtosecond pulse laser, to perform Young's interference experiment. Unlike the case of a continuous wave laser pump, a broadband pulse laser pump can submerge an interference pattern. In order to obtain a high visibility interference pattern, we used a lens with a tunable focal length and two interference filters to eliminate the effects of the broadband pump laser. It is proven that the process of two-photon direct interference is a post-selection process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the photo-excited capacitance-voltage (C-V) characteristics as well as the photoluminescence spectra under different biases of a wide quantum well (QW) embedded in an n(+)-i-n(+) double-barrier structure. The pronounced peak feature at zero bias in the C-V spectrum observed upon illumination is regarded as a kind of quantum capacitance related to the quantum confined Stark effect, originating from the spatial separation of the photo-generated electron and hole gas in the QW. This fact is further demonstrated through the comparison between the C-V curve with the PL intensity versus applied voltage relationship under the same excitation. The results may provide us with a more direct and sensitive means in the detection of the separation and accumulation of both types of free carriers-electrons and holes-in low-dimensional semiconductor structures, especially in a new type of optical memory cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-insulating gallium arsenide single crystal grown in space has been used in fabricating low noise field effect transistors and analog switch integrated circuits by the direct ion-implantation technique. All key electrical properties of these transistors and integrated circuits have surpassed those made from conventional earth-grown gallium arsenide. This result shows that device-grade space-grown semiconducting single crystal has surpassed the best terrestrial counterparts. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polyetherketone (PEK-c) guest-host system thin films doped with 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pryazole (DCNP) were prepared. Their second-order nonlinear optical (NLO) coefficients chi(33)((2)) were measured by using Maker fringe method for the polymer films doped with different weight percents of DCNP. Experimental results indicate that the second-order NLO properties of the poled polymer films could decrease with the chromophore loading increasing when the chromophore loading reaches a fairly high level. In this paper, the relationship between the macroscopic second-order NLO coefficient and the chromophore number density was modified under considering the role of the electrostatic interactions of chromophores in the polymer film. According to the modified relationship, the macroscopic second-order NLO coefficient is no longer in direct proportion with the chromophore number density in the polymer film. The effect of the electrostatic interactions of chromophores on second-order NLO properties was discussed. The attenuation of the macroscopic second-order NLO activity can be demonstrated by the role of the chromophore electrostatic interactions at high loading of chromophore in the polymer systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoluminescence in directly si-doped self-organized InAs quantum dots was systematically studied. With doping, a decrease in linewidth and a little blue shift in peak were observed by PL measurement. The results show that direct doping when growing InAs layer may be helpful to the formation of uniform small quantum dots. The work will be meaningful for the fabrication of self-organized InAs quantum dots semiconductor device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is believed that the highly dislocated region near the GaN/sapphire interface is a degenerate layer. In this paper a direct evidence for such a proposal is presented. By inserting a buried AlxGa1-xN (x > 0.5) isolating layer to separate the interface region from the bulk region, the background electron concentration can be significantly reduced, while care must be taken to guarantee that there is no degrading of Hall mobility when choosing the thickness of the isolating layer. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the effect of image forces, arising due to a difference in dielectric permeabilities of the well layer and barrier layers, on the energy spectrum of an electron confined in a rectangular potential well under a magnetic field. Depending on the value and the sign of the dielectric mismatch, image forces can localize electrons near the interfaces of the well or in well centre and change the direct intersubband gaps into indirect ones. These effects can be controlled by variation of the magnetic field, offering possibilities for exact tuning of electronic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the photovoltaic effects in Si doping superlattices (nipi) under different excitation conditions with and without additional cw optical biasing using a He-Ne laser. On the basis of the photovoltaic theory of carrier spatial separation in superlattices, we propose the concept of spatial fixity of the photovoltage polarity in type-II superlattices and examine the experimental results. The photovoltaic effect in Si nipi is found mainly from the direct transitions related with shallow impurities in real space, not the electron-hole band-to-band process as in GaAs nipi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic states and optical transition properties of three semiconductor wires Si? GaAs, and ZnSe are studied by the empirical pseudopotential homojunction model. The energy levels, wave functions, optical transition matrix elements, and lifetimes are obtained for wires of square cross section with width from 2 to 5 (root 2a/2), where a is the lattice constant. It is found that these three kinds of wires have different quantum confinement properties. For Si wires, the energy gap is pseudodirect, and the wave function of the electronic ground state consists mainly of four bulk Delta states. The optical transition matrix elements are much smaller than that of a direct transition, and increase with decreasing wire width. Where the width of wire is 7.7 Angstrom, the Si wire changes from an indirect energy gap to a direct energy gap due to mixing of the bulk Gamma(15) state. For GaAs wires. the energy gap is also pseudodirect in the width range considered, but the optical transition matrix elements are larger than those of Si wires by two orders of magnitude for the same width. However, there is no transfer to a direct energy gap as the wire width decreases. For ZnSe wires, the energy gap is always direct, and the optical transition matrix elements are comparable to those of the direct energy gap bulk semiconductors. They decrease with decreasing wire width due to mixing of the bulk Gamma(1) state with other states. All quantum confinement properties are discussed and explained by our theoretical model and the semiconductor energy band structures derived. The calculated lifetimes of the Si wire, and the positions of photoluminescence peaks, are in good agreement with experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally study the effect of perpendicular electric field on the exciton binding energy using a specially designed step quantum well. From photoluminescence spectra at the temperature of 77 K, we have directly observed remarkable blueshift of the exciton peak due to the transition from spatially direct to spatially indirect excitons induced by electric field. (C) 1995 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental study of a liquid fed direct methanol fuel cell has been conducted in different gravity environments. A small single cell with 5 cm x 5 cm active area has single serpentine channel on the graphite cathode polar plate and 11 parallel straight channels on the graphite anode flow bed. Cell voltage and current have been measured and two-phase flow in anode channels has been in situ visually observed. The experimental results indicate that the effect of gravity on power performance of the direct methanol fuel cell is large when the concentration polarization governs fuel cells operation. Gravitational effect becomes larger at higher current density. Increasing methanol feeding molarity is conducive to weaken the influence of gravity on performance of liquid fed direct methanol fuel cells. Increasing feeding flow rate of methanol solution from 6 to 15 ml/min could reduce the size of carbon dioxide bubbles, while the influence of gravity still exist. Transport phenomena inside direct methanol fuel cells in microgravity is also analyzed and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, the cross-over rates of methanol and ethanol, respectively, through Nafion(R)-115 membranes at different temperatures and different concentrations have been measured and compared. The changes of Nafion(R)-115 membrane porosity in the presence of methanol or ethanol aqueous solutions were also determined by weighing vacuum-dried and alcohol solution-equilibrated membranes. The techniques of anode polarization and adsorption stripping voltarnmetry were applied to compare the electrochemical activity and adsorption ability, respectively. To investigate the consequences of methanol and ethanol permeation from the anode to the cathode on the performance of direct alcohol fuel cells (DAFCs), single DAFC tests, with methanol or ethanol as the fuel, have been carried out and the corresponding anode and cathode polarizations versus dynamic hydrogen electrode (DHE) were also performed. The effect of alcohol concentration on the performance of PtRu/C anode-based DAFCs was investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, several carbon supported PtSn and PtSnRu catalysts were prepared with different atomic ratios and tested in direct ethanol fuel cells (DEFC) operated at lower temperature (T=90 degreesC). XRD and TEM results indicate that all of these catalysts consist of uniform nano-sized particles of narrow distribution and the average particle sizes are always less than 3.0 nm. As the content of Sn increases, the Pt lattice parameter becomes longer. Single direct ethanol fuel cell tests were used to evaluate the performance of carbon supported PtSn catalysts for ethanol electro-oxidation. It was found that the addition of Sn can enhance the activity towards ethanol electro-oxidation. It is also found that a single DEFC of Pt/Sn atomic ratioless than or equal to2, "Pt1Sn1/C, Pt3Sn2/C, and Pt2Sn1/C" shows better performance than those with Pt3Sn1/C and Pt4Sn1/C. But even adopting the least active PtSn catalyst, Pt4Sn1/C, the DEFC also exhibits higher performance than that with the commercial Pt1Ru1/C, which is dominatingly used in PEMFC at present as anode catalyst for both methanol electro-oxidation and CO-tolerance. At 90 degreesC, the DEFC exhibits the best performance when Pt2Sn1/C is adopted as anode catalysts. This distinct difference in DEFC performance between the catalysts examined here is attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and Sn. It is thought that -OHads, Surface Pt active sites and the ohmic effect of PtSn/C catalyst determines the electro-oxidation activity of PtSn catalysts with different Pt/Sn ratios. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work several Pt-based anode catalysts supported on carbon XC-72R were prepared with a novel method and characterized by means of XRD, TEM and XPS analysis. It was found that all these catalysts are consisted of uniform nanosized particles with sharp distribution and Pt lattice parameter decreases with the addition of Ru or Pd and increases with the addition of Sn or W. Cyclic voltammetry (CV) measurements and single direct ethanol fuel cell (DEFC) tests jointly showed that the presence of Sn, Ru and W enhances the activity of Pt towards ethanol electro-oxidation in the following order: Pt1Sn1/C > Pt1Ru1/C > Pt1W1/C > Pt1Pd1/C > Pt/C. Moreover, Pt1Ru1/C further modified by W and Mo showed improved ethanol electro-oxidation activity, but its DEFC performance was found to be inferior to that measured for Pt1Sn1/C. Under this respect, several PtSn/C catalysts with different Pt/Sn atomic ratio were also identically prepared and characterized and their direct ethanol fuel cell performances were evaluated. It was found that the single direct ethanol fuel cell having Pt1Sn1/C or Pt3Sn2/C or Pt2Sn1/C as anode catalyst showed better performances than those with Pt3Sn1/C or Pt4Sn1/C. It was also found that the latter two cells exhibited higher performances than the single cell using Pt1Ru1/C, which is exclusively used in PEMFC as anode catalyst for both methanol electro-oxidation and CO-tolerance. This distinct difference in DEFC performance between the catalysts examined here would be attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and additives. It is thought that an amount of -OHads, an amount of surface Pt active sites and the conductivity effect of PtSn/C catalysts would determine the activity of PtSn/C with different Pt/Sn ratios. At lower temperature values or at low current density regions where the electro-oxidation of ethanol is considered not so fast and its chemisorption is not the rate-determining step, the Pt3Sn2/C seems to be more suitable for the direct ethanol fuel cell. At 75 degreesC, the single ethanol fuel cell with Pt3Sn2/C as anode catalyst showed a comparable performance to that with Pt2Sn1/C, but at higher temperature of 90 degreesC, the latter presented much better performance. It is thought from a practical point of view that Pt2Sn1/C, supplying sufficient -OHads and having adequate active Pt sites and acceptable ohmic effect, could be the appropriate anode catalyst for DEFC. (C) 2003 Elsevier B.V. All rights reserved.