955 resultados para Digital image processing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Given the widespread use of computers, the visual pattern recognition task has been automated in order to address the huge amount of available digital images. Many applications use image processing techniques as well as feature extraction and visual pattern recognition algorithms in order to identify people, to make the disease diagnosis process easier, to classify objects, etc. based on digital images. Among the features that can be extracted and analyzed from images is the shape of objects or regions. In some cases, shape is the unique feature that can be extracted with a relatively high accuracy from the image. In this work we present some of most important shape analysis methods and compare their performance when applied on three well-known shape image databases. Finally, we propose the development of a new shape descriptor based on the Hough Transform.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Ciências Odontológicas - FOAR

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Even though the digital processing of documents is increasingly widespread in industry, printed documents are still largely in use. In order to process electronically the contents of printed documents, information must be extracted from digital images of documents. When dealing with complex documents, in which the contents of different regions and fields can be highly heterogeneous with respect to layout, printing quality and the utilization of fonts and typing standards, the reconstruction of the contents of documents from digital images can be a difficult problem. In the present article we present an efficient solution for this problem, in which the semantic contents of fields in a complex document are extracted from a digital image.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an optimum user-steered boundary tracking approach for image segmentation, which simulates the behavior of water flowing through a riverbed. The riverbed approach was devised using the image foresting transform with a never-exploited connectivity function. We analyze its properties in the derived image graphs and discuss its theoretical relation with other popular methods such as live wire and graph cuts. Several experiments show that riverbed can significantly reduce the number of user interactions (anchor points), as compared to live wire for objects with complex shapes. This paper also includes a discussion about how to combine different methods in order to take advantage of their complementary strengths.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A deep theoretical analysis of the graph cut image segmentation framework presented in this paper simultaneously translates into important contributions in several directions. The most important practical contribution of this work is a full theoretical description, and implementation, of a novel powerful segmentation algorithm, GC(max). The output of GC(max) coincides with a version of a segmentation algorithm known as Iterative Relative Fuzzy Connectedness, IRFC. However, GC(max) is considerably faster than the classic IRFC algorithm, which we prove theoretically and show experimentally. Specifically, we prove that, in the worst case scenario, the GC(max) algorithm runs in linear time with respect to the variable M=|C|+|Z|, where |C| is the image scene size and |Z| is the size of the allowable range, Z, of the associated weight/affinity function. For most implementations, Z is identical to the set of allowable image intensity values, and its size can be treated as small with respect to |C|, meaning that O(M)=O(|C|). In such a situation, GC(max) runs in linear time with respect to the image size |C|. We show that the output of GC(max) constitutes a solution of a graph cut energy minimization problem, in which the energy is defined as the a"" (a) norm ayenF (P) ayen(a) of the map F (P) that associates, with every element e from the boundary of an object P, its weight w(e). This formulation brings IRFC algorithms to the realm of the graph cut energy minimizers, with energy functions ayenF (P) ayen (q) for qa[1,a]. Of these, the best known minimization problem is for the energy ayenF (P) ayen(1), which is solved by the classic min-cut/max-flow algorithm, referred to often as the Graph Cut algorithm. We notice that a minimization problem for ayenF (P) ayen (q) , qa[1,a), is identical to that for ayenF (P) ayen(1), when the original weight function w is replaced by w (q) . Thus, any algorithm GC(sum) solving the ayenF (P) ayen(1) minimization problem, solves also one for ayenF (P) ayen (q) with qa[1,a), so just two algorithms, GC(sum) and GC(max), are enough to solve all ayenF (P) ayen (q) -minimization problems. We also show that, for any fixed weight assignment, the solutions of the ayenF (P) ayen (q) -minimization problems converge to a solution of the ayenF (P) ayen(a)-minimization problem (ayenF (P) ayen(a)=lim (q -> a)ayenF (P) ayen (q) is not enough to deduce that). An experimental comparison of the performance of GC(max) and GC(sum) algorithms is included. This concentrates on comparing the actual (as opposed to provable worst scenario) algorithms' running time, as well as the influence of the choice of the seeds on the output.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CONTEXTUALIZAÇÃO: A biofotogrametria é uma técnica difundida na área da saúde e, apesar dos cuidados metodológicos, há distorções nas leituras angulares das imagens fotográficas. OBJETIVO: Mensurar o erro das medidas angulares em imagens fotográficas com diferentes resoluções digitais em um objeto com ângulos pré-demarcados. MÉTODOS: Utilizou-se uma esfera de borracha com 52 cm de circunferência. O objeto foi previamente demarcado com ângulos de 10º, 30º, 60º e 90º, e os registros fotográficos foram realizados com o eixo focal da câmera a três metros de distância e perpendicular ao objeto, sem utilização de zoom óptico e com resolução de 3, 5 e 10 Megapixels (Mp). Todos os registros fotográficos foram armazenados, e os valores angulares foram analisados por um experimentador previamente treinado, utilizando o programa ImageJ. As aferições das medidas foram realizadas duas vezes, com intervalo de 15 dias entre elas. Posteriormente, foram calculados os valores de acurácia, erro relativo e em graus, precisão e Coeficiente de Correlação Intraclasse (ICC). RESULTADOS: Quando analisado o ângulo de 10º, a média da acurácia das medidas foi maior para os registros com resolução de 3 Mp em relação às resoluções de 5 e 10 Mp. O ICC foi considerado excelente para as três resoluções de imagem analisadas e, em relação aos ângulos analisados nos registros fotográficos, pôde-se verificar maior acurácia, menor erro relativo e em graus e maior precisão para o ângulo de 90º, independentemente da resolução da imagem. CONCLUSÃO: Os registros fotográficos realizados com a resolução de 3 Mp proporcionaram medidas de maiores valores de acurácia e precisão e menores valores de erro, sugerindo ser a resolução mais adequada para gerar imagem de ângulos de 10º e 30º.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: The purpose of this study was to analyse the use of digital tools for image enhancement of mandibular radiolucent lesions and the effects of this manipulation on the percentage of correct radiographic diagnoses. Methods: 24 panoramic radiographs exhibiting radiolucent lesions were selected, digitized and evaluated by non-experts (undergraduate and newly graduated practitioners) and by professional experts in oral diagnosis. The percentages of correct and incorrect diagnoses, according to the use of brightness/contrast, sharpness, inversion, highlight and zoom tools, were compared. All dental professionals made their evaluations without (T-1) and with (T-2) a list of radiographic diagnostic parameters. Results: Digital tools were used with low frequency mainly in T-2. The most preferred tool was sharpness (45.2%). In the expert group, the percentage of correct diagnoses did not change when any of the digital tools were used. For the non-expert group, there was an increase in the frequency of correct diagnoses when brightness/contrast was used in T-2 (p = 0.008) and when brightness/contrast and sharpness were not used in T-1 (p = 0.027). The use or non-use of brightness/contrast, zoom and sharpness showed moderate agreement in the group of experts [kappa agreement coefficient (kappa) = 0.514, 0.425 and 0.335, respectively]. For the non-expert group there was slight agreement for all the tools used (kappa <= 0.237). Conclusions: Consulting the list of radiographic parameters before image manipulation reduced the frequency of tool use in both groups of examiners. Consulting the radiographic parameters with the use of some digital tools was important for improving correct diagnosis only in the group of non-expert examiners. Dentomaxillofacial Radiology (2012) 41, 203-210. doi: 10.1259/dmfr/78567773

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article describes the development of a visual stimulus generator to be used in neuroscience experiments with invertebrates such as flies. The experiment consists in the visualization of a fixed image that is displaced horizontally according to the stimulus data. The system is capable of displaying 640 x 480 pixels with 256 intensity levels at 200 frames per second (FPS) on conventional raster monitors. To double the possible horizontal positioning possibilities from 640 to 1280, a novel technique is presented introducing artificial inter-pixel steps. The implementation consists in using two video frame buffers containing each a distinct view of the desired image pattern. This implementation generates a visual effect capable of doubling the horizontal positioning capabilities of the visual stimulus generator allowing more precise and movements more contiguous. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate tools for the fusion of images generated by tomography and structural and functional magnetic resonance imaging. METHODS: Magnetic resonance and functional magnetic resonance imaging were performed while a volunteer who had previously undergone cranial tomography performed motor and somatosensory tasks in a 3-Tesla scanner. Image data were analyzed with different programs, and the results were compared. RESULTS: We constructed a flow chart of computational processes that allowed measurement of the spatial congruence between the methods. There was no single computational tool that contained the entire set of functions necessary to achieve the goal. CONCLUSION: The fusion of the images from the three methods proved to be feasible with the use of four free-access software programs (OsiriX, Register, MRIcro and FSL). Our results may serve as a basis for building software that will be useful as a virtual tool prior to neurosurgery.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[ES] IPOL es una revista científica de procesamiento digital de imágenes y diversos métodos de análisis de imágenes. En cada publicación se incorpora una demo donde cualquier persona puede probar, vía web, el funcionamiento del método descrito en dicha publicación. De esta forma, se puede usar el método sin tener conocimiento de programación ni tener que instalarlo en su ordenador. En este proyecto fin de carrera se quiere desarrollar una aplicación que permita la ejecución de las demos desde un dispositivo móvil. Con ello, se pretende hacer más accesible la ejecución de algoritmo de procesamiento de imágenes y aumentar su divulgación científica.