802 resultados para Diabetes Mellitus Experimental
Resumo:
AIMS/HYPOTHESIS: To investigate the effect of treatment with the non-steroidal anti-inflammatory drug Sulindac on the early vascular pathology of diabetic retinopathy in the dog, and it's effect on recognised biochemical indices of hyperglycaemia-related pathophysiology. METHODS: Experimental diabetes (streptozotocin/alloxan) was induced in 22 male beagle dogs and 12 of the animals were assigned at random to receive oral Sulindac (10 mg/kg daily). Age- and sex-matched control animals were maintained as non-diabetic controls. After 4 years, several morphological parameters were quantified in the retinal microvasculature of each animal group using an established stereological method. Also, the following diabetes-associated biochemical parameters were analysed: accumulation of advanced glycation end products (AGEs), red blood cell polyol levels and antioxidant status. RESULTS: Diabetes increased red blood cell sorbitol levels when compared to non-diabetic controls (p<or =0.05), however, there was no difference in sorbitol levels between the untreated and the treated diabetic animals. No significant differences were found in red blood cell myoinositol levels between the three groups of animals. Pentosidine and other AGEs were increased two- to three-fold in the diabetic animals (p<or =0.001) although treatment with Sulindac did not affect their accumulation in diabetic skin collagen or alter diabetes-induced rises in plasma malondialdehyde. Retinal capillary basement membrane volume was significantly increased in the untreated diabetic dogs compared to non-diabetic controls or Sulindac-treated diabetic animals (p<or =0.0001). CONCLUSION/INTERPRETATION: This study has confirmed the beneficial effect of a non-steroidal anti-inflammatory drug on the early vascular pathology of diabetic retinopathy. However the treatment benefit was not dependent on inhibition of polyol pathway activity, advanced glycation, or oxidative stress.
Resumo:
Advanced glycation end products (AGEs), formed from the nonenzymatic glycation of proteins and lipids with reducing sugars, have been implicated in many diabetic complications; however, their role in diabetic retinopathy remains largely unknown. Recent studies suggest that the cellular actions of AGEs may be mediated by AGE-specific receptors (AGE-R). We have examined the immunolocalization of AGEs and AGE-R components R1 and R2 in the retinal vasculature at 2, 4, and 8 months after STZ-induced diabetes as well as in nondiabetic rats infused with AGE bovine serum albumin for 2 weeks. Using polyclonal or monoclonal anti-AGE antibodies and polyclonal antibodies to recombinant AGE-R1 and AGE-R2, immunoreactivity (IR) was examined in the complete retinal vascular tree after isolation by trypsin digestion. After 2, 4, and 8 months of diabetes, there was a gradual increase in AGE IR in basement membrane. At 8 months, pericytes, smooth muscle cells, and endothelial cells of the retinal vessels showed dense intracellular AGE IR. AGE epitopes stained most intensely within pericytes and smooth muscle cells but less in basement membrane of AGE-infused rats compared with the diabetic group. Retinas from normal or bovine-serum-albumin-infused rats were largely negative for AGE IR. AGE-R1 and -R2 co-localized strongly with AGEs of vascular endothelial cells, pericytes, and smooth muscle cells of either normal, diabetic, or AGE-infused rat retinas, and this distribution did not vary with each condition. The data indicate that AGEs accumulate as a function of diabetes duration first within the basement membrane and then intracellularly, co-localizing with cellular AGE-Rs. Significant AGE deposits appear within the pericytes after long-term diabetes or acute challenge with AGE infusion conditions associated with pericyte damage. Co-localization of AGEs and AGE-Rs in retinal cells points to possible interactions of pathogenic significance.
Resumo:
S-(2-Succinyl)cysteine (2SC) has been identified as a chemical modification in plasma proteins, in the non-mercaptalbumin fraction of human plasma albumin, in human skin collagen, and in rat skeletal muscle proteins and urine. 2SC increases in human skin collagen with age and is increased in muscle protein of diabetic vs. control rats. The concentration of 2SC in skin collagen and muscle protein correlated strongly with that of the advanced glycation/lipoxidation end-product (AGE/ALE), N(epsilon)-(carboxymethyl)lysine (CML). 2SC is formed by a Michael addition reaction of cysteine sulfhydryl groups with fumarate at physiological pH. Fumarate, but not succinate, inactivates the sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase in vitro, in concert with formation of 2SC. 2SC is the first example of spontaneous chemical modification of protein by a metabolic intermediate in the Krebs cycle. These observations identify fumarate as an endogenous electrophile and suggest a role for fumarate in regulation of metabolism.
Resumo:
Dyslipidemia accelerates vascular complications of diabetes. Nuclear magnetic resonance (NMR) analysis of lipoprotein subclasses is used to evaluate a mouse model of human familial hypercholesterolemia +/- streptozotocin (STZ)-induced diabetes. A double knockout (DKO) mouse (low-density lipoprotein receptor [LDLr] -/-; apolipoprotein B [apoB] mRNA editing catalytic polypeptide-1 [Apobec1] -/-) was studied. Wild-type (WT) and DKO mice received sham or STZ injections at age 7 weeks, yielding control (WT-C, DKO-C) and diabetic (WT-D, DKO-D) groups. Fasting serum was collected when the mice were killed (age 40 weeks) for Cholestech analysis (Cholestech Corp, Hayward, CA) and NMR lipoprotein subclass profile. By Cholestech, fasting triglyceride and total cholesterol increased in DKO-C versus WT-C. Diabetes further increased total cholesterol in DKO. High-density lipoprotein cholesterol (HDL-C) was similar among all groups. NMR revealed that LDL in all groups was present in a subclass the size of large human LDL and was increased 48-fold in DKO-C versus WT-C animals, but was unaffected by diabetes. HDL was found in a subclass equivalent to large human HDL, and was similar among groups. In conclusion, NMR analysis reveals lipoprotein subclass distributions and the effects of genetic modification and diabetes in mice, but lack of particles the size of human small LDL and small HDL may limit the relevance of the present animal model to human disease.
Resumo:
AIMS: To assess quantitatively variations in the extent of capillary basement membrane (BM) thickening between different retinal layers and within arterial and venous environments during diabetes. METHODS: One year after induction of experimental (streptozotocin) diabetes in rats, six diabetic animals together with six age-matched control animals were sacrificed and the retinas fixed for transmission electron microscopy (TEM). Blocks of retina straddling the major arteries and veins in the central retinal were dissected out, embedded in resin, and sectioned. Capillaries in close proximity to arteries or veins were designated as residing in either an arterial (AE) or a venous (VE) environment respectively, and the retinal layer in which each capillary was located was also noted. The thickness of the BM was then measured on an image analyser based two dimensional morphometric analysis system. RESULTS: In both diabetics and controls the AE capillaries had consistently thicker BMs than the VE capillaries. The BMs of both AE and VE capillaries from diabetics were thicker than those of capillaries in the corresponding retinal layer from the normal rats (p <or = 0.005). Also, in normal AE and VE capillaries and diabetic AE capillaries the BM in the nerve fibre layer (NFL) was thicker than that in either the inner (IPL) or outer (OPL) plexiform layers (p <or = 0.001). However, in diabetic VE capillaries the BMs of capillaries in the NFL were thicker than those of capillaries in the IPL (p <or = 0.05) which, in turn, had thicker BMs than capillaries in the OPL (p <or = 0.005). CONCLUSIONS: The variation in the extent of capillary BM thickening between different retinal layers within AE and VE environments may be related to differences in levels of oxygen tension and oxidative stress in the retina around arteries compared with that around veins.
Resumo:
The absolute volume of Weibel-Palade (WP) bodies, the storage organelles of von Willebrand factor (vWF), was estimated by a stereological method in a known volume of central retina from normal and 5-year diabetic dogs. The results showed that the volume of WP bodies present in the endothelium of the retinal vasculature varies with blood vessel type and in diabetes. In both diabetic and normal dogs the endothelium of the retinal veins contained a higher volume of WP bodies than that of the retinal arteries. In dogs which had been diabetic for a duration of 5 years the volume of WP bodies present in the endothelium of retinal veins was significantly greater than in the endothelium of veins from the control animals. However, there was no significant difference in the volume of WP bodies present in the endothelium of retinal arteries or capillaries between the two groups of animals.
Resumo:
This study was undertaken to further characterise the fine structural changes occurring in the retinal circulation in early diabetes. The eyes of eight alloxan/streptozotocin and three spontaneously diabetic dogs were examined by trypsin digest and electron microscopy after durations of diabetes of between 1 and 7 years. Basement membrane (BM) thickening in the retinal capillaries was the only obvious fine structural change identified during the first 3 years of diabetes and was established within 1 year of induction. Widespread pericyte loss was noted after 4 years of diabetes and was paralleled by loss of smooth muscle (SM) cells, in the retinal arterioles. SM cell loss was most obvious in the smaller arterioles of the central retina. No microaneurysms were noted in the experimental diabetic dogs with up to 5 years' duration of diabetes but were widespread in a spontaneously diabetic animal at 7 years. This study has shown that SM cell loss, a hitherto unrecognised feature of diabetic microangiopathy, accompanies pericyte loss in the retinal circulation of diabetic dogs.
Resumo:
Cell loss and regeneration were investigated and compared in the retinal microvasculature of age- and sex-matched normal and streptozotocin diabetic rats. Selective pericyte loss in the diabetic rat was characterized by changes in the pericyte to endothelial cell ratio in retinal capillaries isolated for microscopy by the trypsin digest technique. A comparison of 3- and 9-month-old normal rats showed no significant change in the pericyte to endothelial cell ratio (1:2.7). In diabetic animals the ratio was reduced to 1:4.03, which was statistically significant (P less than .001). Premitotic retinal vascular cells in normal and diabetic rats were labelled with tritiated thymidine and the labelling indices calculated from cell counts of trypsin digest preparations. Methyl H3 thymidine was infused continuously over an eight-day period using osmotic mini pumps. The labelling index of endothelial cells (0.33%) in normal rats increased to 0.91% in diabetic animals (P less than .05). The labelling index of pericyte cells in normal animals (0.16%) did not increase significantly (P greater than .05) in diabetic animals (0.19%). A special stain was used to exclude labelled polymorphonuclear leukocytes from the cell counts.
Resumo:
PURPOSE: To consider whether STZ-induced hyperglycemia renders rat retinal function and ocular blood flow more susceptible to acute intraocular pressure (IOP) challenge.
METHODS: Retinal function (electroretinogram, ERG) was measured during acute IOP challenge (10-100 mmHg, 5 mmHg increments, 3 min/step, vitreal cannulation) in adult Long-Evans rats (6-week old, citrate: n=6, STZ: n=10) 4 weeks after citrate buffer or streptozotocin (STZ, 65 mg/kg, blood glucose > 15 mmol/l) injection. At each IOP, dim and bright flash (-4.56, -1.72 log cd.s.m^-2) ERG responses were recorded to measure inner retinal and ON-bipolar cell function, respectively. Ocular blood flow (laser Doppler flowmetry, citrate; n=6, STZ; n=10) was also measured during acute IOP challenge. Retinae were isolated for qPCR analysis of nitric oxide synthase mRNA expression endothelial, eNos; inducible, iNos; neuronal, nNos).
RESULTS: STZ-induced diabetes increased the susceptibility of inner retinal (IOP at 50% response, 60.1, CI: 57.0-62.0 mmHg vs. citrate: 67.5, CI: 62.1-72.4 mmHg) and ON-bipolar cell function (STZ: 60.3, CI: 58.0-62.8 mmHg vs. citrate: 65.1, CI: 58.0-62.78 mmHg) and ocular blood flow (43.9, CI: 40.8-46.8 vs. citrate: 53.4, CI: 50.7-56.1 mmHg) to IOP challenge. Citrate eyes showed elevated eNos mRNA (+49.7%) after IOP stress, an effect not found in STZ-diabetic eyes (-5.7%, P<0.03). No difference was observed for iNos or nNos (P>0.05) following IOP elevation.
CONCLUSIONS: STZ-induced diabetes increased functional susceptibility during acute IOP challenge. This functional vulnerability is associated with a reduced capacity for diabetic eyes to upregulate eNOS expression and to autoregulate blood flow in response to stress.
Resumo:
AIMS: To assess quantitatively variations in the extent of capillary basement membrane (BM) thickening between different retinal layers and within arterial and venous environments during diabetes.
METHODS: One year after induction of experimental (streptozotocin) diabetes in rats, six diabetic animals together with six age-matched control animals were sacrificed and the retinas fixed for transmission electron microscopy (TEM). Blocks of retina straddling the major arteries and veins in the central retinal were dissected out, embedded in resin, and sectioned. Capillaries in close proximity to arteries or veins were designated as residing in either an arterial (AE) or a venous (VE) environment respectively, and the retinal layer in which each capillary was located was also noted. The thickness of the BM was then measured on an image analyser based two dimensional morphometric analysis system.
RESULTS: In both diabetics and controls the AE capillaries had consistently thicker BMs than the VE capillaries. The BMs of both AE and VE capillaries from diabetics were thicker than those of capillaries in the corresponding retinal layer from the normal rats (p < or = 0.005). Also, in normal AE and VE capillaries and diabetic AE capillaries the BM in the nerve fibre layer (NFL) was thicker than that in either the inner (IPL) or outer (OPL) plexiform layers (p < or = 0.001). However, in diabetic VE capillaries the BMs of capillaries in the NFL were thicker than those of capillaries in the IPL (p < or = 0.05) which, in turn, had thicker BMs than capillaries in the OPL (p < or = 0.005).
CONCLUSIONS: The variation in the extent of capillary BM thickening between different retinal layers within AE and VE environments may be related to differences in levels of oxygen tension and oxidative stress in the retina around arteries compared with that around veins.
Resumo:
OBJETIVO: Avaliar o número de podócitos e espessamento da membrana basal glomerular (MBG) em ratos diabéticos com e sem controle glicêmico com 6 e 12 meses da indução. MÉTODOS: 100 ratos Wistar com 200-300g compuseram 6 grupos: Normal (N6, N12 - 25 animais) Diabético (D6,D12 - 25 animais) e diabético tratado com insulina 1,8 a 3,0 U/Kg e acarbose misturada a ração (50g para cada 100g de ração) (DT6 e DT12 - 25 animais). Aloxana foi ministrada via endovenosa na dose de 42mg/Kg. Peso, ingestão hídrica e diurese de 24 horas e glicemia e glicosúria foram determinados antes da inoculação, 7 e 14 dias após e mensalmente. No 14ª dia foi iniciado o tratamento. Três grupos de animais (N6, D6 e DT6) foram sacrificados no 6° mês e três grupos (N12, D12 e DT12), no 12ª mês sendo o tecido renal processado para estudo à microscopia eletrônica. RESULTADOS: A glicemia dos animais DT6 e DT12 diferiram significativamente, dos ratos D6 e D12, e não diferiram dos grupos N6 e N12. O número de podócitos do grupo DT6 não diferiu de N6 e D6 (mediana=11); o número de podócitos de DT12 (mediana=11) diferiu de D12 (mediana=8) e não diferiu de N12 (mediana=11). O espessamento da MBG de D6 (0,18 micrômetros) foi menor que D12 (0,29 micrômetros); de DT6 (0,16 micrômetros) foi menor que D6 (0,18 micrômetros) e de DT12 (0,26 micrômetros) foi menor que D12 (0,29 micrômetros). CONCLUSÃO: O controle da hiperglicemia preveniu o espessamento da MBG na nefropatia diabética aloxânica precoce (6 meses) e tardia (12 meses), e a diminuição do número de podócitos.
Resumo:
OBJETIVO: Conhecer os efeitos do diabetes e o impacto de seu tratamento medicamentoso em curto e longo prazo sobre os vasos da coróide e membrana de Bruch. MÉTODOS: Foram estudados 30 ratos Wistar, divididos em 3 grupos experimentais: grupo controle (GC), grupo diabético (GD) e grupo diabético tratado (GT), estudados 1 mês (momento M1) e 12 meses (momento M2) após o início do experimento. O diabetes foi induzido por aloxana endovenosa, na dose de 42 mg/kg. O GT foi tratado com hipoglicemiante oral (acarbose) e insulina subcutânea. Após o sacrifício, os olhos foram preparados para exame ao microscópio eletrônico de transmissão, interessando a ultra-estrutura da membrana de Bruch e os vasos da coróide. RESULTADOS: O exame ultra-estrutural da coróide dos ratos diabéticos mostrou depósitos na membrana de Bruch, acúmulo de vesículas, glicogênio e corpos densos no citoplasma das células endoteliais. O grupo mais afetado foi de ratos diabéticos de 12 meses (GDM2). Os animais com menor intensidade de alterações foram os ratos tratados por 12 meses (GTM2). CONCLUSÃO: Os ratos diabéticos desenvolveram alterações degenerativas na membrana de Bruch e vasos da coróide. Estas alterações foram mais evidentes nos animais submetidos à doença crônica, mas também ocorreram agudamente. O tratamento a curto prazo não foi capaz de evitar os processos degenerativos. A longo prazo, o tratamento inibiu a progressão destes processos.
Resumo:
These experiments were carried out to study the effects of acute cold exposure (0-2°C/4 hr) on rectal temperature, blood glucose and plasma free fatty acids (FFA) in alloxan-diabetic rats. Male Wistar rats weighing 170-190 g were used and diabetes was induced by i.v. alloxan injection (40 mg/kg body wt). Cold exposure produced severe hypothermia in diabetic rats. After 4 hr of cold, blood glucose of diabetic rats was reduced from 296±16 to 86t±12 mg/dl (P<0.01), and FFA increased slightly, but was not statistically different (P>0.05) from the initial value. As expected, interscapular brown adipose tissue (IBAT) and retroperitoneal and epididymal white adipose tissues were significantly lower in diabetic than in control rats. Cold exposure reduced total IBAT lipids in control but not in diabetic animals. The results of this experiment suggest that diabetic rats were unable to maintain body temperature in the cold, probably because of a failure to generate an adequate amount of heat by nonshivering thermogenesis in brown adipose tissue.
Resumo:
1. 1. The aim of these experiments was to study the extent to which previous cold-acclimation improves the cold-tolerance of diabetic rats. 2. 2. Alloxan diabetic rats (fasting blood glucose higher than 200mg/dl) were used in the experiments. 3. 3. In Expt. 1, non-cold-acclimated control and diabetic rats were exposed to cold environment (7-9°C), and the percentage of survival calculated during a 12-day experimental period. In Expt. 2, the rats were previously cold-acelimated before alloxan or saline injection (diabetic and control cold-acclimated rats) and the survival rate was also assessed during a 12-day period in the cold. 4. 4. The percentage of survival of the non-cold-acclimated diabetic rats (Expt.l) was 19% compared with 79% of the diabetic cold-acclimated animals (Expt. 2). There were no deaths in the control groups. 5. 5. Cold-acclimated diabetic rats maintained a near-normal thermogenic response after noradrenaline injection. This response was impaired in non-cold-acclimated diabetic rats. 6. 6. The results of these experiments suggest that the enhanced cold-tolerance of diabetic cold-acclimated rats could be related to the increased sympathetic activity and enhanced insulin sensitivity in thermogenic tissues, such as brown fat. © 1987.
Resumo:
Müller cells provide nutrition for neural cells. We studied the structure and ultrastructure of Müller cells in the retina of thirty 3-month old Wistar rats, divided equally into 3 groups: normal rats, alloxan diabetic rats and treated alloxan diabetic rats, 1 and 12 months after induction of diabetes. We observed that the Müller cell nuclei under light microscope examination had hexagonal shape and higher density than the other nuclei. Differences between groups could be observed only by electron microscopy. In the diabetic rats, Müller cells presented dispersion of nuclear chromatin and electrondense nuclear granulations, with the presence of increased glycogen, dense bodies and lysosomes in the cytoplasm. The alterations were more frequent in the perivascular region and at 12 months. The treated diabetic rats exhibited some alterations we observed in diabetic rats, but these alterations were less intense. We conclude that, despite the treatment, the diabetic retinopathy continues to evolve.