869 resultados para Desert ecology
Resumo:
It has recently been proposed that life-history evolution is subject to a fundamental size-dependent constraint. This constraint limits the rate at which biomass can be produced so that production per unit of body mass is inevitably slower in larger organisms than in smaller ones. Here we derive predictions for how changes in body size and production rates evolve in different lifestyles subject to this constraint. Predictions are tested by using data on the mass of neonate tissue produced per adult per year in 637 placental mammal species and are generally supported. Compared with terrestrial insectivores with generalized primitive traits, mammals that have evolved more specialized lifestyles have divergent massspecific production rates: (i) increased in groups that specialize on abundant and reliable foods: grazing and browsing herbivores (artiodactyls, lagomorphs, perissoclactyls, and folivorous rodents) and flesh-eating marine mammals (pinnipeds, cetaceans); and (ii) decreased in groups that have lifestyles with reduced death rates: bats, primates, arboreal, fossorial, and desert rodents, bears, elephants, and rhinos. Convergent evolution of groups with similar lifestyles is common, so patterns of productivity across mammalian taxa reflect both ecology and phylogeny. The overall result is that groups with different lifestyles have parallel but offset relationships between production rate and body size. These results shed light on the evolution of the fast-slow life-history continuum, suggesting that variation occurs along two axes corresponding to body size and lifestyle.
Resumo:
1. To understand population dynamics in stressed environments it is necessary to join together two classical lines of research. Population responses to environmental stress have been studied at low density in life table response experiments. These show how the population's growth rate (pgr) at low density varies in relation to levels of stress. Population responses to density, on the other hand, are based on examination of the relationship between pgr and population density. 2. The joint effects of stress and density on pgr can be pictured as a contour map in which pgr varies with stress and density in the same way that the height of land above sea level varies with latitude and longitude. Here a microcosm experiment is reported that compared the joint effects of zinc and population density on the pgr of the springtail Folsomia candida (Collembola). 3. Our experiments allowed the plotting of a complete map of the effects of density and a stressor on pgr. Particularly important was the position of the pgr= 0 contour, which suggested that carrying capacity varied little with zinc concentration until toxic levels were reached. 4. This prediction accords well with observations of population abundance in the field. The method also allowed us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence. 5. The mechanisms responsible for these phenomena are discussed. As zinc is an essential trace element the initial increase in pgr is probably a consequence of dietary zinc deficiency. The Allee effect may be attributed to productivity of the environment increasing with density at low density. Density dependence is a result of food limitation. 6. Synthesis and applications. We illustrate a novel solution based on mapping a population's growth rate in relation to stress and population density. Our method allows us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence in an important ecological indicator species. We hope that the approach followed here will prove to have general applicability enabling predictions of field abundance to be made from estimates of the joint effects of the stressors and density on population growth rate.
Resumo:
The influence of sedimentation, depth and substratum angle on sponge assemblages in the Wakatobi region, south-eastern Sulawesi, Indonesia was considered. Sponge assemblages were sampled from two reef localities. The first reef (Sampela) was highly impacted by high sedimentation rates with fine sediment particles that settle slowly, while the second (Hoga) experienced only fast settling coarse sediment with lower overall sedimentation rates. Sponge assemblages were sampled (area occupied and numbers) on the reef fiat (0 m) and at 5 (reef crest), 10 and 15 m (15 m at Hoga only). Some significant (P < 0.001) differences were observed in the area occupied and the number of sponge patches between surface angles and sites. Significantly lower (t > 4.61, df = 9, P < 0.001) sponge numbers, percentage cover and richness were associated with the reef flat at both sites compared with all other depths at each site, with the exception of abundance of sponges on the reef flat at Sampela, which was much greater than at any other depth sampled. Species richness increased with depth at both sites but differences between surface angles were only recorded at Sampela, with higher species richness being found on vertical, inclined and horizontal surfaces respectively A total of 100 sponge species (total area sampled 52.5 m(2)) was reported from the two sites, with 58 species found at Sampela and 71 species at Hoga (41% of species shared). Multi-dimensional scaling (MDS) indicated differences in assemblage structure between sites and most depth intervals, but not substratum angles. A number of biological (e.g. competition and predation) and physical (e.g. sedimentation and aerial exposure) factors were considered to control sponge abundance and richness. Unexpectedly a significant (F-1,F-169 = 148.98, P < 0.001) positive linear relationship was found between sponge density and area occupied. In areas of high sponge coverage, the number of patches was also high, possibly due to fragmentation of large sponges produced as a result of predation and physical disturbance. The MDS results were also the same whether sponge numbers or percentage cover estimates were used, suggesting that although these different approaches yield different sorts of information, the same assemblage structure can be identified.
Resumo:
The human gut microbiota, comprising many hundreds of different microbial species, has closely co-evolved with its human host over the millennia. Diet has been a major driver of this co-evolution, in particular dietary non-digestible carbohydrates. This dietary fraction reaches the colon and becomes available for microbial fermentation, and it is in the colon that the great diversity of gut microorganisms resides. For the vast majority of our evolutionary history humans followed hunter-gatherer life-styles and consumed diets with many times more non-digestible carbohydrates, fiber and whole plant polyphenol rich foods than typical Western style diets today.
Resumo:
The application of probiotics and prebiotics to the manipulation of the microbial ecology of the human colon has recently seen many scientific advances. The sequencing of probiotic genomes is providing a wealth of new information on the biology of these microorganisms. In addition, we are learning more about the interactions of probiotics with human cells and with pathogenic bacteria. An alternative means of modulating the colonic microbial community is by the use of prebiotic oligosaccharides. Increasing knowledge of the metabolism of prebiotics by probiotics is allowing us to consider specifically targeting such dietary intervention tools at specific populatiori groups and specific disease states. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Modern studies of prebiotic non digestible carbohydrates continue to expand and demonstrate their colonic and systemic benefits. However, virtually nothing is known of their use among ancient populations. In this paper we discuss evidence for prebiotic use in the archaeological record from select areas of the world. It is suggested that members of our genus Homo would have had sufficient ecological opportunity to include prebiotic-bearing plants in diet as early as ~ 2 million years ago, but that significant dietary intake would not have taken place until the advent of technological advances that characterized the Upper Paleolithic of ~40,000 years ago. Throughout human evolution, hominid populations that diversified their diet to include prebiotic-bearing plants would have had a selective advantage over competitors.
Resumo:
Parasitoids are the most important natural enemies of many insect species. Larvae of many Drosophila species can defend themselves against attack by parasitoids through a cellular immune response called encapsulation. The paper reviews recent studies of the evolutionary biology and ecological genetics of resistance in Drosophila, concentrating on D. melanogaster. The physiological basis of encapsulation, and the genes known to interfere with resistance are briefly summarized. Evidence for within- and between-population genetic variation in resistance from isofemale line, artificial selection and classical genetic studies are reviewed. There is now firm evidence that resistance is costly to Drosophila, and the nature of this cost is discussed, and the possibility that it may involve a reduction in metabolic rate considered. Comparative data on encapsulation and metabolic rates across seven Drosophila species provides support for this hypothesis. Finally, the possible population and community ecological consequences of evolution in the levels of host resistance are examined.
Resumo:
The atmospheric component of the United Kingdom’s new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are parameterized within the model using six particle size divisions, which are treated independently. The biomass is modeled in three nonindependent modes, and emissions are prescribed from an external dataset. The model is shown to produce realistic horizontal and vertical distributions of these aerosols for each season when compared with available satellite- and ground-based observations and with other models. Combined aerosol optical depths off the coast of North Africa exceed 0.5 both in boreal winter, when biomass is the main contributor, and also in summer, when the dust dominates. The model is capable of resolving smaller-scale features, such as dust storms emanating from the Bode´ le´ and Saharan regions of North Africa and the wintertime Bode´ le´ low-level jet. This is illustrated by February and July case studies, in which the diurnal cycles of model variables in relation to dust emission and transport are examined. The top-of-atmosphere annual mean radiative forcing of the dust is calculated and found to be globally quite small but locally very large, exceeding 20 W m22 over the Sahara, where inclusion of dust aerosol is shown to improve the model radiative balance. This work extends previous aerosol studies by combining complexity with increased global resolution and represents a step toward the next generation of models to investigate aerosol–climate interactions. 1. Introduction Accurate modeling of mineral dust is known to be important because of its radiative impact in both numerical weather prediction models (Milton et al. 2008; Haywood et