861 resultados para Demand scenarios
Resumo:
The regimen of environmental flows (EF) must be included as terms of environmental demand in the management of water resources. Even though there are numerous methods for the computation of EF, the criteria applied at different steps in the calculation process are quite subjective whereas the results are fixed values that must be meet by water planners. This study presents a friendly-user tool for the assessment of the probability of compliance of a certain EF scenario with the natural regimen in a semiarid area in southern Spain. 250 replications of a 25-yr period of different hydrological variables (rainfall, minimum and maximum flows, ...) were obtained at the study site from the combination of Monte Carlo technique and local hydrological relationships. Several assumptions are made such as the independence of annual rainfall from year to year and the variability of occurrence of the meteorological agents, mainly precipitation as the main source of uncertainty. Inputs to the tool are easily selected from a first menu and comprise measured rainfall data, EF values and the hydrological relationships for at least a 20-yr period. The outputs are the probabilities of compliance of the different components of the EF for the study period. From this, local optimization can be applied to establish EF components with a certain level of compliance in the study period. Different options for graphic output and analysis of results are included in terms of graphs and tables in several formats. This methodology turned out to be a useful tool for the implementation of an uncertainty analysis within the scope of environmental flows in water management and allowed the simulation of the impacts of several water resource development scenarios in the study site.
Resumo:
Demands are one of the most uncertain parameters in a water distribution network model. A good calibration of the model demands leads to better solutions when using the model for any purpose. A demand pattern calibration methodology that uses a priori information has been developed for calibrating the behaviour of demand groups. Generally, the behaviours of demands in cities are mixed all over the network, contrary to smaller villages where demands are clearly sectorised in residential neighbourhoods, commercial zones and industrial sectors. Demand pattern calibration has a final use for leakage detection and isolation. Detecting a leakage in a pattern that covers nodes spread all over the network makes the isolation unfeasible. Besides, demands in the same zone may be more similar due to the common pressure of the area rather than for the type of contract. For this reason, the demand pattern calibration methodology is applied to a real network with synthetic non-geographic demands for calibrating geographic demand patterns. The results are compared with a previous work where the calibrated patterns were also non-geographic.
Resumo:
Due to the increase in water demand and hydropower energy, it is getting more important to operate hydraulic structures in an efficient manner while sustaining multiple demands. Especially, companies, governmental agencies, consultant offices require effective, practical integrated tools and decision support frameworks to operate reservoirs, cascades of run-of-river plants and related elements such as canals by merging hydrological and reservoir simulation/optimization models with various numerical weather predictions, radar and satellite data. The model performance is highly related with the streamflow forecast, related uncertainty and its consideration in the decision making. While deterministic weather predictions and its corresponding streamflow forecasts directly restrict the manager to single deterministic trajectories, probabilistic forecasts can be a key solution by including uncertainty in flow forecast scenarios for dam operation. The objective of this study is to compare deterministic and probabilistic streamflow forecasts on an earlier developed basin/reservoir model for short term reservoir management. The study is applied to the Yuvacık Reservoir and its upstream basin which is the main water supply of Kocaeli City located in the northwestern part of Turkey. The reservoir represents a typical example by its limited capacity, downstream channel restrictions and high snowmelt potential. Mesoscale Model 5 and Ensemble Prediction System data are used as a main input and the flow forecasts are done for 2012 year using HEC-HMS. Hydrometeorological rule-based reservoir simulation model is accomplished with HEC-ResSim and integrated with forecasts. Since EPS based hydrological model produce a large number of equal probable scenarios, it will indicate how uncertainty spreads in the future. Thus, it will provide risk ranges in terms of spillway discharges and reservoir level for operator when it is compared with deterministic approach. The framework is fully data driven, applicable, useful to the profession and the knowledge can be transferred to other similar reservoir systems.
Resumo:
When an accurate hydraulic network model is available, direct modeling techniques are very straightforward and reliable for on-line leakage detection and localization applied to large class of water distribution networks. In general, this type of techniques based on analytical models can be seen as an application of the well-known fault detection and isolation theory for complex industrial systems. Nonetheless, the assumption of single leak scenarios is usually made considering a certain leak size pattern which may not hold in real applications. Upgrading a leak detection and localization method based on a direct modeling approach to handle multiple-leak scenarios can be, on one hand, quite straightforward but, on the other hand, highly computational demanding for large class of water distribution networks given the huge number of potential water loss hotspots. This paper presents a leakage detection and localization method suitable for multiple-leak scenarios and large class of water distribution networks. This method can be seen as an upgrade of the above mentioned method based on a direct modeling approach in which a global search method based on genetic algorithms has been integrated in order to estimate those network water loss hotspots and the size of the leaks. This is an inverse / direct modeling method which tries to take benefit from both approaches: on one hand, the exploration capability of genetic algorithms to estimate network water loss hotspots and the size of the leaks and on the other hand, the straightforwardness and reliability offered by the availability of an accurate hydraulic model to assess those close network areas around the estimated hotspots. The application of the resulting method in a DMA of the Barcelona water distribution network is provided and discussed. The obtained results show that leakage detection and localization under multiple-leak scenarios may be performed efficiently following an easy procedure.
Resumo:
New business and technology platforms are required to sustainably manage urban water resources [1,2]. However, any proposed solutions must be cognisant of security, privacy and other factors that may inhibit adoption and hence impact. The FP7 WISDOM project (funded by the European Commission - GA 619795) aims to achieve a step change in water and energy savings via the integration of innovative Information and Communication Technologies (ICT) frameworks to optimize water distribution networks and to enable change in consumer behavior through innovative demand management and adaptive pricing schemes [1,2,3]. The WISDOM concept centres on the integration of water distribution, sensor monitoring and communication systems coupled with semantic modelling (using ontologies, potentially connected to BIM, to serve as intelligent linkages throughout the entire framework) and control capabilities to provide for near real-time management of urban water resources. Fundamental to this framework are the needs and operational requirements of users and stakeholders at domestic, corporate and city levels and this requires the interoperability of a number of demand and operational models, fed with data from diverse sources such as sensor networks and crowsourced information. This has implications regarding the provenance and trustworthiness of such data and how it can be used in not only the understanding of system and user behaviours, but more importantly in the real-time control of such systems. Adaptive and intelligent analytics will be used to produce decision support systems that will drive the ability to increase the variability of both supply and consumption [3]. This in turn paves the way for adaptive pricing incentives and a greater understanding of the water-energy nexus. This integration is complex and uncertain yet being typical of a cyber-physical system, and its relevance transcends the water resource management domain. The WISDOM framework will be modeled and simulated with initial testing at an experimental facility in France (AQUASIM – a full-scale test-bed facility to study sustainable water management), then deployed and evaluated in in two pilots in Cardiff (UK) and La Spezia (Italy). These demonstrators will evaluate the integrated concept providing insight for wider adoption.
Resumo:
Libraries are caught in the middle—between static or shrinking budgets on one hand and ever-expanding user needs on the other. How did we get here, and where do we go from here? This paper will offer two perspectives: Part I will present survey results about changing Library purchasing habits in light of changing formats, access, business models and user demands. Data from a previous survey on this topic will be compared and updated. Pricing trends and possible futures will be discussed. Part II will briefly trace the history of libraries’ roles in scholarly communication and connecting learners with knowledge. From there, we show an example of phasing in a patron-driven / demand-driven and short-term loan e-book program, complete with incorporating these tools in library instruction, research, and portable device loadability for field work.
Resumo:
Expediting new program development can help universities meet student and employer demand while gaining an edge over competitors, but coordinating program development and approval requires careful preparation and execution. This report profiles strategies to measure market demand for new programs, choose programs for accelerated development, and leverage internal resources. The report also suggests ways to structure and staff program development to maximize speed and effectiveness.
Resumo:
Este trabalho utilizou os dados da Pesquisa de Orçamentos Familiares (POF) na Região Metropolitana de Porto Alegre (RMPA), realizada pelo Centro de Estudos e Pesquisas Econômicas (IEPE) da Universidade Federal do Rio Grande do Sul (UFRGS), em 1995, para estimar um sistema de demanda por alimentos. Implementou-se o Almost Ideal Demand System (AIDs), proposto por Deaton e Muellbauer. Com base nos coeficientes estimados, calcularam-se as elasticidadespreço, preço-cruzadas e renda para dez subgrupos de alimentos.
Resumo:
For strictly quasi concave differentiable utility functions, demand is shown to be differentiable almost everywhere if marginal utilities are pointwise Lipschitzian. For concave utility functions, demand is differentiable almost everywhere in the case of differentiable additively separable utility or in the case of quasi-linear utility.
Resumo:
This paper investigates which properties money-demand functions have to satisfy to be consistent with multidimensional extensions of Lucasí(2000) versions of the Sidrauski (1967) and the shopping-time models. We also investigate how such classes of models relate to each other regarding the rationalization of money demands. We conclude that money demand functions rationalizable by the shoppingtime model are always rationalizable by the Sidrauski model, but that the converse is not true. The log-log money demand with an interest-rate elasticity greater than or equal to one and the semi-log money demand are counterexamples.
Resumo:
Ao longo da história da humanidade, vários esforços foram feitos na tentativa de prever o futuro. Isto ocorreu como uma forma de antever possíveis situações e também de estabelecer mudanças de objetivos devido às alternativas apresentadas. Inúmeros questionamentos surgiram diante deste processo e inegavelmente estavam centrados no quesito “incerteza” dos eventos. E é exatamente neste contexto que surge a técnica prospectiva, que tem o propósito de analisar as incertezas e refletir sobre as suas alternativas de ação no presente e trata de aprimorar o entendimento de como o futuro pode acontecer. As opções de futuro se materializam através da sua descrição ordenada e consistente, ou seja, através de um cenário que é a delimitação de uma situação futura e da seqüência dos acontecimentos que permitem passar da situação de origem a essa situação futura. Assim, o objetivo desse trabalho é realizar um estudo prospectivo e longo prazo sobre a demanda de aços planos no Brasil, tendo em vista a importância da indústria siderúrgica brasileira e às incertezas a ela relacionadas e utiliza a análise prospectiva na elaboração de cenários passíveis de ocorrência. Portanto, trata, inicialmente, de aspectos conceituais da visão prospectiva e sua evolução histórica, abordando e focalizando a técnica proposta por Michel Godet, porém utilizando o método PROSPEX de Eduardo Marques para a elaboração de cenários da demanda de aços planos no Brasil. Diante disso, foram identificados dois cenários qualitativos contrastantes e posteriormente submetidos a um modelo macroeconômico de projeção, o Projetar_e, que, devidamente calibrado, indicou quantitativamente o nível de diversas variáveis econômicas e o desempenho futuro do Produto Interno Bruto (PIB). Como resultado, concluímos que há uma forte relação de causalidade entre o PIB e o consumo de aços planos e identificamos uma equação de regressão linear que permite a projeção da referida demanda. As conclusões ainda demonstram que os resultados dos cenários quantitativos identificados neste trabalho apresentam diferenças significativas em relação às estimativas efetuadas pelo Instituto Brasileiro de Siderurgia (IBS), cabendo, portanto uma reflexão sobre a plausibilidade da utilização de cenários de caráter projetivos para estudos de longo vii prazo, baseados em dados históricos que simplesmente extrapolam para o futuro a imagem do passado. Finalmente, recomendamos pesquisas adicionais para a formalização da integração de métodos qualitativos com métodos quantitativos de elaboração de cenários e a utilização de estudos prospectivos nas empresas participantes da cadeia de valor que utilizam o aço plano como matéria-prima essencial nos seus processos produtivos.