932 resultados para Delivery system
Resumo:
INTRODUCTION: Liposomes remain at the forefront of drug and vaccine design owing to their well-documented abilities to act as delivery vehicles. Nevertheless, the concept of liposomes as delivery vehicles is not a new one, with most works focusing on their use for the delivery of genes and drugs. However, in the last 10 years a significant amount of research has focused on using liposomes as vaccine adjuvants, not only as an antigen delivery vehicle but also as a tool to increase the immunogenicity of peptide and protein antigens. AREAS COVERED: This paper reviews liposomal adjuvants now in vaccine development, with particular emphasis on their adjuvant mechanism and how specific physicochemical characteristics of liposomes affect the immune response. The inclusion of immunomodulators is also discussed, with prominence given to Toll-like receptor ligands. EXPERT OPINION: The use of liposomes as vaccine delivery systems is evolving rapidly owing to the combined increase in technological advances and understanding of the immune system. Liposomes that contain and deliver immunostimulators and antigens are now being developed to target diseases that require stimulation of both humoral and cell-mediated immune responses. The CAF liposomal system, described in detail in this review, is one liposomal model that shows such flexibility.
Resumo:
Targeting of drugs and therapies locally to the esophagus is an important objective in the development of new and more effective dosage forms. Therapies that are retained within the oral cavity for both local and systemic action have been utilized for many years, although delivery to the esophagus has been far less reported. Esophageal disease states, including infections, motility disorders, gastric reflux, and cancers, would all benefit from localized drug delivery. Therefore, research in this area provides significant opportunities. The key limitation to effective drug delivery within the esophagus is sufficient retention at this site coupled with activity profiles to correspond with these retention times; therefore, a suitable formulation needs to provide the drug in a ready-to-work form at the site of action during the rapid transit through this organ. A successfully designed esophageal-targeted system can overcome these obstacles. This review presents a range of dosage form approaches for targeting the esophagus, including bioadhesive liquids and orally retained lozenges, chewing gums, gels, and films, as well as endoscopically delivered therapeutics. The techniques used to measure efficacy both in vitro and in vivo are also discussed. Drug delivery is a growing driver within the pharmaceutical industry and offers benefits both in terms of clinical efficacy, as well as in market positioning, as a means of extending a drug's exclusivity and profitability. Emerging systems that can be used to target the esophagus are reported within this review, as well as the potential of alternative formulations that offer benefits in this exciting area.
Resumo:
Purpose - To provide an example of the use of system dynamics within the context of a discrete-event simulation study. Design/methodology/approach - A discrete-event simulation study of a production-planning facility in a gas cylinder-manufacturing plant is presented. The case study evidence incorporates questionnaire responses from sales managers involved in the order-scheduling process. Findings - As the project progressed it became clear that, although the discrete-event simulation would meet the objectives of the study in a technical sense, the organizational problem of "delivery performance" would not be solved by the discrete-event simulation study alone. The case shows how the qualitative outcomes of the discrete-event simulation study led to an analysis using the system dynamics technique. The system dynamics technique was able to model the decision-makers in the sales and production process and provide a deeper understanding of the performance of the system. Research limitations/implications - The case study describes a traditional discrete-event simulation study which incorporated an unplanned investigation using system dynamics. Further, case studies using a planned approach to showing consideration of organizational issues in discrete-event simulation studies are required. Then the role of both qualitative data in a discrete-event simulation study and the use of supplementary tools which incorporate organizational aspects may help generate a methodology for discrete-event simulation that incorporates human aspects and so improve its relevance for decision making. Practical implications - It is argued that system dynamics can provide a useful addition to the toolkit of the discrete-event simulation practitioner in helping them incorporate a human aspect in their analysis. Originality/value - Helps decision makers gain a broader perspective on the tools available to them by showing the use of system dynamics to supplement the use of discrete-event simulation. © Emerald Group Publishing Limited.
Resumo:
In this paper, a co-operative distributed process mining system (CDPMS) is developed to streamline the workflow along the supply chain in order to offer shorter delivery times, more flexibility and higher customer satisfaction with learning ability. The proposed system is equipped with the ‘distributed process mining’ feature which is used to discover the hidden relationships among each working decision in distributed manner. This method incorporates the concept of data mining and knowledge refinement into decision making process for ensuring ‘doing the right things’ within the workflow. An example of implementation is given, based on the case of slider manufacturer.
Resumo:
For many decades, the Kingdom of Saudi Arabia has been widely known for being a reliable oil exporter. This fact, however, has not exempted it from facing significant domestic energy challenges. One of the most pressing of these challenges involves bridging the widening electricity supply-demand gap where, currently, the demand is growing at a very fast rate. One crucial means to address this challenge is through delivering power supply projects with maximum efficiency. Project delivery delay, however, is not uncommon in this highly capital-intensive industry, indicating electricity supplies are not coping with the demand increases. To provide a deeper insight into the challenges of project implementation and efficient practice, this research adopts a pragmatic approach by triangulating literature, questionnaires and semi-structured interviews. The research was conducted in the Saudi Arabian power supply industry – Western Operating Area. A total of 105 usable questionnaires were collected, and 28 recorded, semi-structured interviews were conducted, analysed and synthesised to produce a conceptual model of what constitutes the project implementation challenges in the investigated industry. This was achieved by conducting a comprehensive ranking analysis applied to all 58 identified and surveyed factors which, according to project practitioners in the investigated industry, contribute to project delay. 28 of these project delay factors were selected as the "most important" ones. Factor Analysis was employed to structure these 28 most important project delay factors into the following meaningful set of 7 project implementation challenges: Saudi Electricity Company's contractual commitments, Saudi Electricity Company's communication and coordination effectiveness, contractors' project planning and project control effectiveness, consultant-related aspects, manpower challenges and material uncertainties, Saudi Electricity Company's tendering system, and lack of project requirements clarity. The study has implications for industry policy in that it provides a coherent assessment of the key project stakeholders' central problems. From this analysis, pragmatic recommendations are proposed that, if enacted, will minimise the significance of the identified problems on future project outcomes, thus helping to ensure the electricity supply-demand gap is diminished.
Resumo:
In this study, investigations into phonophoresis were conducted by employing 3 distinct in vitro models. The aim of the first model was to evaluate the effect of ultrasound on the migration rate of different classes of molecules through agar gel. The derived data suggested that small, relatively hydrophobic molecules are more susceptible to ultrasound-enhanced diffusion through the water-filled channels of the agar gel. The application of heat alone increased drug migration by a similar magnitude as the ultrasound, indicating that ultrasonic heating directly increases the thermodynamic potential for diffusion. In the second experimental system, whole rat skin was pre-sonicated and then examined for changes in its barrier properties. At high intensities (1 to 2W cm-2), ultrasonic waves irreversibly compromised the barrier properties of the skin, following the general patterns described in the literature reports. At low intensities (< 1W cm-2), ultrasound discharged sebum from the sebaceous glands so as to fill much of the hair follicle shafts. This entirely novel phenomenon is probably produced by the mechanical effects of the beam. The deposition of sebaceous lipids within the hair follicle shafts can mean that this absorption pathway is blocked for hydrophilic molecules that penetrate via this route. Consequently, this phenomenon can be utilised as a probe to measure the relative follicular contribution to total penetration for these molecules. In the final phonophoresis model, modified Franz cells were employed in order to assess the ultrasound effect on the concurrent transdermal permeation of various molecules through whole rat skin. For the most lipophilic agent tested, the rate-limiting step of absorption was partitioning from the stratum corneum into the viable epidermis. Sonication did not accelerate this step.
Resumo:
This research focused on the formation of particulate delivery systems for the sub-unit fusion protein, Ag85B-ESAT-6, a promising tuberculosis (TB) vaccine candidate. Initial work concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyl dioctadecyl ammonium (DDA). These studies demonstrated that addition of the immunomodulatory trehalose dibehenate (TDB) enhanced the physical stability of the system whilst also adding further adjuvanticity. Indeed, this formulation was effective in stimulating both a cell mediated and humoural immune response. In order to investigate an alternative to the DDA-TDB system, microspheres based on poly(DL-lactide-co-glycolide) (PLGA) incorporating the adjuvants DDA and TDB, either alone or in combination, were first optimised in terms of physico-chemical characteristics, followed by immunological analysis. The formulation incorporating PLGA and DDA emerged as the lead candidate, with promising protection data against TB. Subsequent optimisation of the lead microsphere formulation investigated the effect of several variables involved in the formulation process on physico-chemical and immunological characteristics of the particles produced. Further, freeze-drying studies were carried out with both sugar-based and amino acid-based cryoprotectants, in order to formulate a stable freexe-dried product. Finally, environmental scanning electron microscopy (ESEM) was investigated as a potential alternative to conventional SEM for the morphological investigation of microsphere formulations. Results revealed that the DDA-TDB liposome system proved to be the most immunologically efficient delivery vehicle studied, with high levels of antibody and cytokine production, particularly gamma-interferon (IFN-ϒ), considered the key cytokine marker for anti-mycobacterial immunity. Of the microsphere systems investigated, PLGA in combination with DDA showed the most promise, with an ability to initiate a broad spectrum of cytokine production, as well as antigen specific spleen cell proliferation comparable to that of the DDA-TDB formulation.
Resumo:
In this work we have established the efficient mucosal delivery of vaccines using absorption enhancers and chitosan. In addition, the use of chitosan was shown to enhance the action of other known adjuvants, such as CTB or Quil-A. Collectively, the results presented herein indicate that chitosan has excellent potential as a mucosal adjuvant. We have evaluated a number of absorption enhancers for their adjuvant activity in vivo. Polyornithine was shown to engender high scrum immune reasons to nasally delivered antigens, with higher molecular weight polyornithine facilitating the best results. We have demonstrated for the first time that vitamin E TPGS can act as mucosal adjuvant. Deoxycholic acid, cyclodextrins and acylcarnitines were also identified as effective mucosal adjuvants and showed enhanced immune responses to nasally delivered TT, DT and Yersinia pestis V and F1 antigens. Previously, none of these agents, common in their action as absorption enhancing agents, have been shown to have immunopotentiating activity for mucosal immunisation. We have successfully developed novel surface modified microspheres using chitosan as an emulsion stabiliser during the preparation of PLA microspheres. It was found that immune responses could be substantially increased, effectively exploiting the immunopenetrating characteristics of both chitosan and PLA microspheres in the same delivery vehicle. In the same study, comparison of intranasal and intramuscular routes of administration showed that with these formulations, the nasal route could be as effective as intramuscular delivery, highlighting the potential of mucosal administration for these particulate delivery systems. Chitosan was co-administered with polymer microspheres. It was demonstrated that this strategy facilitates markedly enhanced immune responses in both magnitude and duration following intramuscular administration. We conclude that this combination shows potential for single dose administration of vaccines. In another study, we have shown that the addition of chitosan to alum adsorbed TT was able to enhance immune responses. PLA micro/nanospheres were prepared and characterised with discreet particle size ranges. A smaller particle size was shown to facilitate higher scrum IgG responses following nasal administration. A lower antigen loading was additionally identified as being preferential for the induction of immune responses in combination with the smaller particle size. This may be due to the fact that the number of particles will be increased when antigen loading is low, which may in turn facilitate a more widespread uptake of particles. PLA lamellar particles were prepared and characterised. Adsorbed TT was evaluated for the potential to engender immune responses in vivo. These formulations were shown to generate effective immune responses following intramuscular administration. Positively charged polyethylcyanoacrylate and PLA nanoparticies were designed and characterised and their potential as delivery vehicles for DNA vaccines was investigated. Successful preparation of particles with narrow size distribution and positive surface charge (imparted by the inclusion of chitosan) was achieved. In the evaluation of antibody responses to DNA encoded antigen in the presence of alum administered intranasally, discrimination between the groups was only seen following intramuscular boosting with the corresponding protein. Our study showed that DNA vaccines in the presence of either alum or Quil-A may advantageously influence priming of the immune system by a mucosal route. The potential for the combination of adjuvants, Quil-A and chitosan, to enhance antibody responses to plasmid encoded antigen co-administered with the corresponding protein antigen was shown and this is worthy of further investigation. The findings here have identified novel adjuvants and approaches to vaccine delivery. In particular, chitosan or vitamin E TPGS are shown here to have considerable promise as non-toxic, safe mucosal adjuvants. In addition, biodegradable mucoadhesive delivery systems, surface modified with chitosan in a single step process, may have application for other uses such as drug and gene delivery.
Resumo:
Ribozymes are short strands of RNA that possess a huge potential as biological tools for studying gene expression and as therapeutic agents to down-regulate undesirable gene expression. Successful application of ribozymes requires delivery to the target site in sufficient amounts for an adequate duration. However, due to their large size and polyanionic character ribozymes are not amenable to transport across biological membranes. In this study a chemically modified ribozyme with enhanced biological stability, targeted against the EGFR mRNA has been evaluated for cellular delivery to cultured glial and neuronal cells with a view to developing treatments for brain tumours. Cellular delivery of free ribozyme was characterised in cultured glial and neuronal cells from the human and rat. Delivery was very limited and time dependent with no consistent difference observed between glial and neuronal cells in both species. Cellular association was largely temperature and energy-dependent with a small component of non-energy dependent association. Further studies showed that ribozyme cellular association was inhibited with self and cross competition with nucleic and non-nucleic acid polyanions indicating the presence of cell surface ribozyme-binding molecules. Trypsin washing experiments further implied that the ribozyme binding surface molecules were protein by nature. Dependence of cellular association on pH indicated that interaction of ribozyme with cell surface molecules was based on ionic interactions. Fluoresence studies indicated that, post cell association, ribozymes were sequestered in sub-cellular vesicles. South-Western blots identified several cell surface proteins which bind to ribozymes and could facilitate cellular association. The limited cellular association observed with free ribozyme required the development and evaluation of polylactide-co-glycolide microspheres incorporating ribozyme for enhanced cellular delivery. Characterisation of microsphere mediated delivery of ribozyme in cultured glial and neuronal cells showed that association increased by 18 to 27-fold in all cell types with no differences observed between cell lines and species. Microsphere mediated delivery was temperature and energy dependent and independent of pH. In order to assess the potential of PLGA micro spheres for the CNS delivery of ribozyme the distribution of ribozyme entrapping microspheres was investigated in rat CNS after intracerebroventricular injection. Distribution studies demonstrated that after 24 hours there was no free ribozyme present in the brain parenchyma, however microsphere entrapped ribozyme was found in the CNS. Microspheres remained in the ventricular system after deposition and passed from the lateral ventricles to the third and fourth ventricle and in the subarachnoid space. Investigation of the influence of microsphere size on the distribution in CNS demonstrated that particles up to 2.5 and O.5f.lm remained in the ventricles around the choroid plexus and ependymal lining.
Resumo:
Recent technological advances have resulted in the production of safe subunit and synthetic small peptide vaccines. Unfortunately, these vaccines are weakly or non-immunogenic in the absence of an immunological adjuvant (agents that can induce strong immunity to antigens). In addition, in order to prevent and/or control infection at the mucosal surface, stimulation of the mucosal immune system is essential. This may be achieved via the common mucosal immune system by exposure to antigen at a mucosal surface remote from the area of infection. Initial studies investigated the potential of multiple emulsions in effecting oral absorption and the subsequent immune responses to a lipopolysaccharide vaccine (LPS) after immunisation. Nasal delivery of LPS was carried out in parallel work using either aqueous solution or gel formulations. Tetanus toxoid vaccine in simple solution was delivered to guinea pigs as free antigen or entrapped in DSPC liposomes. In addition, adsorbed tetanus toxoid vaccine was delivered nasally free or in an aerosil gel formulation. This work was extended to investigate guinea pigs immunised by various mucosal routes with a herpes simplex virus subunit vaccine prepared from virus infected cells and delivered in gels, multiple emulsions and liposomes. Comparable serum antibody responses resulted but failed to produce enhanced protection against vaginal challenge when compared to subcutaneous immunisation with alhydrogel adjuvanted vaccine. Thus, immunisation of the mucosal surface by these methods may have been inadequate. These studies were extended in an attempt to protect against HSV genital challenge by construction of an attenuated Salmonella typhimurium HWSH aroA mutant expressing a cloned glycoprotein D-l gene fused to the Es-cherichia coli lac z promoter. Preliminary work on the colonisation of guinea pigs with S. typhimurium HWSH aroA mutants were carried out, with the aim of using the guinea pig HSV vaginal model to investigate protection.
Resumo:
Initial work focused on the preparation, optimisation and characterisation of poly (D,L-lactide) (PLA) microspheres with the aim of optimising their formulation based on minimizing the particle size into the range suitable for pulmonary delivery to alveoli. In order to produce dry powders and to enhance their long-term physico-chemical stability, microspheres were prepared as a dry powder via freeze-drying. Optimisation studies showed that using appropriate concentrations of polymer 3% (w/v) in organic phase and emulsifier 10% (w/v) in external aqueous phase, the double solvent evaporation method produced high protein loading microspheres (72 ± 0.5%) with an appropriate particle size for pulmonary drug delivery. Combined use of trehalose and leucine as cyroprotectants (6% and 1% respectively, w/v) produced freeze-dried powders with the best aerosolisation profile among those tested. Although the freeze-dried PLA microsphere powders were not particularly respirable in dry powder inhalation, nebulisation of the rehydrated powders using an ultrasonic nebuliser resulted in improved aerosilisation performance compared to the air-jet nebuliser. When tested in vitro using a macrophage cell line, the PLA microspheres system exhibited a low cytotoxicity and the microspheres induced phagocytic activity in macrophages. However, interestingly, the addition of an immunomodulator to the microsphere formulations (4%, w/w of polymer) reduced this phagocytic activity and macrophage activation compared to microspheres formulated using PLA alone. This suggested that the addition of trehalose dibehenate may not enhance the ability of these microspheres to be used as vaccine delivery systems.
Resumo:
Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) incorporating the glycolipid trehalose 6,6-dibehenate (TDB) forms a promising liposomal vaccine adjuvant. To be exploited as effective subunit vaccine delivery systems, the physicochemical characteristics of liposomes were studied in detail and correlated with their effectiveness in vivo, in an attempt to elucidate key aspects controlling their efficacy. This research took the previously optimised DDA-TDB system as a foundation for a range of formulations incorporating additional lipids of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), by incrementally replacing the cationic content within DDA-TDB or reducing the total DDA-TDB dose upon its substitution, to ascertain the role of DDA and the effect of DDA-TDB concentration in influencing the resultant immunological performance upon delivery of the novel subunit TB vaccine, Ag85B–ESAT-6-Rv2660c (H56 vaccine). With the aim of using the DPPC based systems for pulmonary vaccine delivery and the DSPC systems for application via the intramuscular route, initial work focused on physicochemical characterisation of the systems with incorporation of DPPC or DSPC displaying comparable physical stability, morphological structure and levels of antigen retention to that of DDA-TDB. Thermodynamic analysis was also conducted to detect main phase transition temperatures and subsequent in vitro cell culture studies demonstrated a favourable reduction in cytotoxicity, stimulation of phagocytic activity and macrophage activation in response to the proposed liposomal immunoadjuvants. Immunisation of mice with H56 vaccine via the proposed liposomal adjuvants showed that DDA was an important factor in mediating resultant immune responses, with partial replacement or substitution of DDA-TDB stimulating Th1 type cellular immunity characterised by elevated levels of IgG2b antibodies and IFN-? and IL-2 cytokines, essential for providing protective efficacy against TB. Upon increased DSPC content within the formulation, either by DDA replacement or reduction of DDA and TDB, responses were skewed towards Th2 type immunity with reduced IgG2b antibody levels and elevated IL-5 and IL-10 cytokine production, as resultant immunological responses were independent of liposomal zeta potential. The role of the cationic DDA lipid and the effect of DDA-TDB concentration were appreciated as the proposed liposomal formulations elicited antigen specific antibody and cellular immune responses, demonstrating the potential of cationic liposomes to be utilised as adjuvants for subunit vaccine delivery. Furthermore, the promising capability of the novel H56 vaccine candidate in eliciting protection against TB was apparent in a mouse model.
Resumo:
Compared to naked DNA immunisation, entrapment of plasmid-based DNA vaccines into liposomes by the dehydration-rehydration method has shown to enhance both humoural and cell-mediated immune responses to encoded antigens administered by a variety of routes. In this paper we have compared the potency of lipid-based and non-ionic surfactant based vesicle carrier systems for DNA vaccines after subcutaneous immunisation. Plasmid pI.18Sfi/NP containing the nucleoprotein (NP) gene of A/Sichuan/2/87 (H3N2) influenza virus in the pI.18 expression vector was incorporated by the dehydration-rehydration method into various vesicle formulations. The DRV method, entailing mixing of small unilamellar vesicles (SUV) with DNA, followed by dehydration and rehydration, yielded high DNA vaccine incorporation values (85-97% of the DNA used) in all formulations. Studies on vesicle size revealed lipid-based systems formed cationic submicron size vesicles whilst constructs containing a non-ionic surfactant had significantly large z-average diameters (>1500 nm). Subcutaneous vesicle-mediated DNA immunisation employing two DRV(DNA) formulations as well as naked DNA revealed that humoural responses (immunoglobulin total IgG, and subclasses IgG 1 and 1gG 2a) engendered by the plasmid encoded nucleoprotein were substantially higher after dosing twice, 28 days apart with 10 μg DRV-entrapped DNA compared to naked DNA. Comparison between the lipid and non-ionic based vesicle formulations revealed no significant difference in stimulated antibody production. These results suggest that, not only can DNA be effectively entrapped within a range of lipid and non-ionic based vesicle formulations using the DRV method but that such DRV vesicles containing DNA may be a useful system for subcutaneous delivery of DNA vaccines. © 2004 Elsevier B.V. All rights reserved.