986 resultados para Dc Plasma
Resumo:
The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 degrees C in the as-deposited condition as well as in the postannealed (at 600 degrees C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni3Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200-250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (NixTiySi) at the film-substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region similar to 250-300 nm just above the film substrate interface. (C) 2013 American Vacuum Society.
Resumo:
Although HA is highly biocompatible, one of the major disadvantages of HA include the lack of antibacterial property. In an earlier study, we demonstrated the potential role of magnetic field stimulation on bactericidal property in vitro. Following this, it was hypothesized that antibacterial property can be realized if bacteria are grown on magnetic biocomposites in vitro. In addressing this issue, this study demonstrates the development of HA-Fe3O4-based magnetic substrate with multifunctional properties. For this purpose, HA-xFe(3)O(4) (x: 10, 20 and 40wt%) powder compositions were sintered using uniquely designed spark plasma sintering conditions (three stage sintering with final holding temperature of 1050 degrees C for 5min). A saturation magnetization of 24emu/g is measured with HA-40%Fe3O4. Importantly, all the HA-Fe3O4 composites demonstrated bactericidal property by rupturing the membrane of Escherichia coli bacteria, while supporting cell growth of metabolically active human fetal osteoblast cells over 8d culture. A systematic decrease in bacterial viability with Fe3O4 addition is consistent with a commensurate increase in reactive oxygen species (ROS).
Resumo:
In the present work, we report spectroscopic studies of laser-induced plasmas produced by focusing the second harmonic (532nm) of a Nd:YAG laser onto the laminar flow of a liquid containing chromium. The plasma temperature is determined from the coupled Saha-Boltzmann plot and the electron density is evaluated from the Stark broadening of an ionic line of chromium Cr(II)] at 267.7nm. Our results reveal a decrease in plasma temperature with an increase in Cr concentration up to a certain concentration level; after that, it becomes approximately constant, while the electron density increases with an increase in analyte (Cr) concentration in liquid matrix.
Resumo:
The voltage ripple and power loss in the DC-capacitor of a voltage source inverter depend on the harmonic currents flowing through the capacitor. This paper presents double Fourier series based harmonic analysis of DC capacitor current in a three-level neutral point clamped inverter, modulated with sine-triangle PWM. The analytical results are validated experimentally on a 5-kVA three-level inverter prototype. The results of the analysis are used for predicting the power loss in the DC capacitor.
Resumo:
This paper presents a comparative evaluation of the average and switching models of a dc-dc boost converter from the point of view of real-time simulation. Both the models are used to simulate the converter in real-time on a Field Programmable Gate Array (FPGA) platform. The converter is considered to function over a wide range of operating conditions, and could do transition between continuous conduction mode (CCM) and discontinuous conduction mode (DCM). While the average model is known to be computationally efficient from the perspective of off-line simulation, the same is shown here to consume more logical resources than the switching model for real-time simulation of the dc-dc converter. Further, evaluation of the boundary condition between CCM and DCM is found to be the main reason for the increased consumption of resources by the average model.
Resumo:
A three-level common-mode voltage eliminated inverter with single dc supply using flying capacitor inverter and cascaded H-bridge has been proposed in this paper. The three phase space vector polygon formed by this configuration and the polygon formed by the common-mode eliminated states have been discussed. The entire system is simulated in Simulink and the results are experimentally verified. This system has an advantage that if one of devices in the H-bridge fails, the system can still be operated as a normal three-level inverter at full power. This inverter has many other advantages like use of single dc supply, making it possible for a back-to-back grid-tied converter application, improved reliability, etc.
Resumo:
A new hybrid multilevel power converter topology is presented in this paper. The proposed power converter topology uses only one DC source and floating capacitors charged to asymmetrical voltage levels, are used for generating different voltage levels. The SVPWM based control strategy used in this converter maintains the capacitor voltages at the required levels in the entire modulation range including the over-modulation region. For the voltage levels: nine and above, the number of components required in the proposed topology is significantly lower, compared to the conventional multilevel inverter topologies. The number of capacitors required in this topology reduces drastically compared to the conventional flying capacitor topology, when the number of levels in the inverter output increases. This topology has better fault tolerance, as it is capable of operating with reduced number of levels, in the entire modulation range, in the event of any failure in the H-bridges. The transient as well as the steady state performance of the nine-level version of the proposed topology is experimentally verified in the entire modulation range including the over-modulation region.
Resumo:
This work reports the processing-microstructure-property correlation of novel HA-BaTiO3-based piezobiocomposites, which demonstrated the bone-mimicking functional properties. A series of composites of hydroxyapatite (HA) with varying amounts of piezoelectric BaTiO3 (BT) were optimally processed using uniquely designed multistage spark plasma sintering (SPS) route. Transmission electron microscopy imaging during in situ heating provides complementary information on the real-time observation of sintering behavior. Ultrafine grains (0.50m) of HA and BT phases were predominantly retained in the SPSed samples. The experimental results revealed that dielectric constant, AC conductivity, piezoelectric strain coefficient, compressive strength, and modulus values of HA-40wt% BT closely resembles with that of the natural bone. The addition of 40wt% BT enhances the long-crack fracture toughness, compressive strength, and modulus by 132%, 200%, and 165%, respectively, with respect to HA. The above-mentioned exceptional combination of functional properties potentially establishes HA-40wt% BT piezocomposite as a new-generation composite for orthopedic implant applications.
Resumo:
Magnetoplasmadynamic thrusters are known to enter a strongly unstable regime, calledas onset in the literature, under high specific impulse operation. This paper probes the early signs of onset in relatively moderate specific impulse operation by a single fluid plasma thruster simulation. The procedure involves solving the combined Maxwell’s-Navier-Stokes equation, with an onset criterion of radial current reaching close to zero values near the electrodes. Thruster parameters are varied starting from voltage potential, plasma temperature and cathodic radius. Onset curves are plotted which can provide important engine-specific information in order to understand the onset performance of the plasma thruster.
Resumo:
As petrol prices are going up in developing countries in upcoming decades low cost electric cars will become more and more popular in developing world. One of the main deciding factors for success of electric cars specially in developing world in upcoming decades will be its cost. This paper shows a cost effective method to control the speed of low cost brushed D.C. motor by combining a IC 555 Timer with a High Boost Converter. The main purpose of using High Boost Converter since electric cars needs high voltage and current which a High Boost Converter can provide even with low battery supply.
Resumo:
The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (similar to 1.5 x 10(-6) mm(3)/Nm) and a modest COF (similar to 0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (similar to 2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu. (C) The Minerals, Metals & Materials Society and ASM International 2013
Resumo:
In the present paper, a novel topology for generating a 17-level inverter using three-level flying capacitor inverter and cascaded H-bridge modules with floating capacitors. The proposed circuit is analyzed and various aspects of it are presented in the paper. This circuit is experimentally verified and the results are shown. The stability of the capacitor balancing algorithm has been verified during sudden acceleration. This circuit has many pole voltage redundancies. This circuit has an advantage of balancing all the capacitor voltages instantaneously by switching through the redundancies. Another advantage of this topology is its ability to generate all the 17 pole voltages from a single DC link which enables back to back converter operation. Also, the proposed inverter can be operated at all load power factors and modulation indices. Another advantage is, if one of the H-bridges fail, the inverter can still be operated at full load with reduced number of levels.
Resumo:
Spark plasma sintering (SPS) is a convenient and rapid means of producing dense ceramic compacts. However, the mechanisms responsible for rapid densification have not been identified satisfactorily, with different studies using an indirect approach yielding varied values for the densification parameters. This study involved SPS in high purity nanocrystalline alumina with temperatures ranging from 1173 to 1423K and stresses from 25 to 100MPa. A direct approach, with analyses at a constant density, revealed a stress exponent of similar to 1 and an inverse grain size dependence of similar to 3, consistent with Coble creep process. Whereas the direct approach gives a stress exponent of similar to 1, the indirect approach used previously gives stress exponents ranging from similar to 2.2 to 3.5 with the same data, thereby revealing potentially spurious values of the densification parameters from conventional indirect approaches to characterizing densification. The rapid densification during SPS is related to the finer grain sizes retained with the rapid heating rates and the imposed stress that enhances the driving force for densification.
Resumo:
We have investigated the effect of post- deposition annealing on the composition and electrical properties of alumina (Al2O3) thin films. Al2O3 were deposited on n-type Si < 100 >. substrates by dc reactive magnetron sputtering. The films were subjected to post- deposition annealing at 623, 823 and 1023 K in vacuum. X-ray photoelectron spectroscopy results revealed that the composition improved with post- deposition annealing, and the film annealed at 1023 K became stoichiometric with an O/Al atomic ratio of 1.49. Al/Al2O3/Si metal-oxide-semiconductor (MOS) structures were then fabricated, and a correlation between the dielectric constant epsilon(r) and interface charge density Q(i) with annealing conditions were studied. The dielectric constant of the Al2O3 thin films increased to 9.8 with post- deposition annealing matching the bulk value, whereas the oxide charge density decreased to 3.11 x 10(11) cm(-2.) Studies on current-voltage IV characteristics indicated ohmic and Schottky type of conduction at lower electric fields (<0.16 MV cm(-1)) and space charge limited conduction at higher electric fields.