790 resultados para Datasets
Resumo:
The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.
Resumo:
The 11-yr solar cycle temperature response to spectrally resolved solar irradiance changes and associated ozone changes is calculated using a fixed dynamical heating (FDH) model. Imposed ozone changes are from satellite observations, in contrast to some earlier studies. A maximum of 1.6 K is found in the equatorial upper stratosphere and a secondary maximum of 0.4 K in the equatorial lower stratosphere, forming a double peak in the vertical. The upper maximum is primarily due to the irradiance changes while the lower maximum is due to the imposed ozone changes. The results compare well with analyses using the 40-yr ECMWF Re-Analysis (ERA-40) and NCEP/NCAR datasets. The equatorial lower stratospheric structure is reproduced even though, by definition, the FDH calculations exclude dynamically driven temperature changes, suggesting an important role for an indirect dynamical effect through ozone redistribution. The results also suggest that differences between the Stratospheric Sounding Unit (SSU)/Microwave Sounding Unit (MSU) and ERA-40 estimates of the solar cycle signal can be explained by the poor vertical resolution of the SSU/MSU measurements. The adjusted radiative forcing of climate change is also investigated. The forcing due to irradiance changes was 0.14 W m−2, which is only 78% of the value obtained by employing the standard method of simple scaling of the total solar irradiance (TSI) change. The difference arises because much of the change in TSI is at wavelengths where ozone absorbs strongly. The forcing due to the ozone change was only 0.004 W m−2 owing to strong compensation between negative shortwave and positive longwave forcings.
Resumo:
Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC-AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water-balance-related parameters. Temperature-dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon 'dieback' results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long-term investments are required.
Resumo:
Facilitating the visual exploration of scientific data has received increasing attention in the past decade or so. Especially in life science related application areas the amount of available data has grown at a breath taking pace. In this paper we describe an approach that allows for visual inspection of large collections of molecular compounds. In contrast to classical visualizations of such spaces we incorporate a specific focus of analysis, for example the outcome of a biological experiment such as high throughout screening results. The presented method uses this experimental data to select molecular fragments of the underlying molecules that have interesting properties and uses the resulting space to generate a two dimensional map based on a singular value decomposition algorithm and a self organizing map. Experiments on real datasets show that the resulting visual landscape groups molecules of similar chemical properties in densely connected regions.
Resumo:
The potential of the τ-ω model for retrieving the volumetric moisture content of bare and vegetated soil from dual polarisation passive microwave data acquired at single and multiple angles is tested. Measurement error and several additional sources of uncertainty will affect the theoretical retrieval accuracy. These include uncertainty in the soil temperature, the vegetation structure and consequently its microwave singlescattering albedo, and uncertainty in soil microwave emissivity based on its roughness. To test the effects of these uncertainties for simple homogeneous scenes, we attempt to retrieve soil moisture from a number of simulated microwave brightness temperature datasets generated using the τ-ω model. The uncertainties for each influence are estimated and applied to curves generated for typical scenarios, and an inverse model used to retrieve the soil moisture content, vegetation optical depth and soil temperature. The effect of each influence on the theoretical soil moisture retrieval limit is explored, the likelihood of each sensor configuration meeting user requirements is assessed, and the most effective means of improving moisture retrieval indicated.
Resumo:
Airborne laser altimetry has the potential to make frequent detailed observations that are important for many aspects of studying land surface processes. However, the uncertainties inherent in airborne laser altimetry data have rarely been well measured. Uncertainty is often specified as generally as 20cm in elevation, and 40cm planimetric. To better constrain these uncertainties, we present an analysis of several datasets acquired specifically to study the temporal consistency of laser altimetry data, and thus assess its operational value. The error budget has three main components, each with a time regime. For measurements acquired less than 50ms apart, elevations have a local standard deviation in height of 3.5cm, enabling the local measurement of surface roughness of the order of 5cm. Points acquired seconds apart acquire an additional random error due to Differential Geographic Positioning System (DGPS) fluctuation. Measurements made up to an hour apart show an elevation drift of 7cm over a half hour. Over months, this drift gives rise to a random elevation offset between swathes, with an average of 6.4cm. The RMS planimetric error in point location was derived as 37.4cm. We conclude by considering the consequences of these uncertainties on the principle application of laser altimetry in the UK, intertidal zone monitoring.
Resumo:
Eight years of cloud properties retrieved from Television Infrared Observation Satellite-N (TIROS-N) Observational Vertical Sounder (TOVS) observations aboard the NOAA polar orbiting satellites are presented. The relatively high spectral resolution of these instruments in the infrared allows especially reliable cirrus identification day and night. This dataset therefore provides complementary information to the International Satellite Cloud Climatology Project (ISCCP). According to this dataset, cirrus clouds cover about 27% of the earth and 45% of the Tropics, whereas ISCCP reports 19% and 25%, respectively. Both global datasets agree within 5% on the amount of single-layer low clouds, at 30%. From 1987 to 1995, global cloud amounts remained stable to within 2%. The seasonal cycle of cloud amount is in general stronger than its diurnal cycle and it is stronger than the one of effective cloud amount, the latter the relevant variable for radiative transfer. Maximum effective low cloud amount over ocean occurs in winter in SH subtropics in the early morning hours and in NH midlatitudes without diurnal cycle. Over land in winter the maximum is in the early afternoon, accompanied in the midlatitudes by thin cirrus. Over tropical land and in the other regions in summer, the maximum of mesoscale high opaque clouds occurs in the evening. Cirrus also increases during the afternoon and persists during night and early morning. The maximum of thin cirrus is in the early afternoon, then decreases slowly while cirrus and high opaque clouds increase. TOVS extends information of ISCCP during night, indicating that high cloudiness, increasing during the afternoon, persists longer during night in the Tropics and subtropics than in midlatitudes. A comparison of seasonal and diurnal cycle of high cloud amount between South America, Africa, and Indonesia during boreal winter has shown strong similarities between the two land regions, whereas the Indonesian islands show a seasonal and diurnal behavior strongly influenced by the surrounding ocean. Deeper precipitation systems over Africa than over South America do not seem to be directly reflected in the horizontal coverage and mesoscale effective emissivity of high clouds.
Resumo:
HFC-134a (CF3CH2F) is the most rapidly growing hydrofluorocarbon in terms of atmospheric abundance. It is currently used in a large number of household refrigerators and air-conditioning systems and its concentration in the atmosphere is forecast to increase substantially over the next 50–100 years. Previous estimates of its radiative forcing per unit concentration have differed significantly 25%. This paper uses a two-step approach to resolve this discrepancy. In the first step six independent absorption cross section datasets are analysed. We find that, for the integrated cross section in the spectral bands that contribute most to the radiative forcing, the differences between the various datasets are typically smaller than 5% and that the dependence on pressure and temperature is not significant. A “recommended'' HFC-134a infrared absorption spectrum was obtained based on the average band intensities of the strongest bands. In the second step, the “recommended'' HFC-134a spectrum was used in six different radiative transfer models to calculate the HFC-134a radiative forcing efficiency. The clear-sky instantaneous radiative forcing, using a single global and annual mean profile, differed by 8%, between the 6 models, and the latitudinally-resolved adjusted cloudy sky radiative forcing estimates differed by a similar amount.
Resumo:
Self-Organizing Map (SOM) algorithm has been extensively used for analysis and classification problems. For this kind of problems, datasets become more and more large and it is necessary to speed up the SOM learning. In this paper we present an application of the Simulated Annealing (SA) procedure to the SOM learning algorithm. The goal of the algorithm is to obtain fast learning and better performance in terms of matching of input data and regularity of the obtained map. An advantage of the proposed technique is that it preserves the simplicity of the basic algorithm. Several tests, carried out on different large datasets, demonstrate the effectiveness of the proposed algorithm in comparison with the original SOM and with some of its modification introduced to speed-up the learning.
Resumo:
In real world applications sequential algorithms of data mining and data exploration are often unsuitable for datasets with enormous size, high-dimensionality and complex data structure. Grid computing promises unprecedented opportunities for unlimited computing and storage resources. In this context there is the necessity to develop high performance distributed data mining algorithms. However, the computational complexity of the problem and the large amount of data to be explored often make the design of large scale applications particularly challenging. In this paper we present the first distributed formulation of a frequent subgraph mining algorithm for discriminative fragments of molecular compounds. Two distributed approaches have been developed and compared on the well known National Cancer Institute’s HIV-screening dataset. We present experimental results on a small-scale computing environment.
Resumo:
Snow properties have been retrieved from satellite data for many decades. While snow extent is generally felt to be obtained reliably from visible-band data, there is less confidence in the measurements of snow mass or water equivalent derived from passive microwave instruments. This paper briefly reviews historical passive microwave instruments and products, and compares the large-scale patterns from these sources to those of general circulation models and leading reanalysis products. Differences are seen to be large between the datasets, particularly over Siberia. A better understanding of the errors in both the model-based and measurement-based datasets is required to exploit both fully. Techniques to apply to the satellite measurements for improved large-scale snow data are suggested.
Resumo:
Northern hemisphere snow water equivalent (SWE) distribution from remote sensing (SSM/I), the ERA40 reanalysis product and the HadCM3 general circulation model are compared. Large differences are seen in the February climatologies, particularly over Siberia. The SSM/I retrieval algorithm may be overestimating SWE in this region, while comparison with independent runoff estimates suggest that HadCM3 is underestimating SWE. Treatment of snow grain size and vegetation parameterizations are concerns with the remotely sensed data. For this reason, ERA40 is used as `truth' for the following experiments. Despite the climatology differences, HadCM3 is able to reproduce the distribution of ERA40 SWE anomalies when assimilating ERA40 anomaly fields of temperature, sea level pressure, atmospheric winds and ocean temperature and salinity. However when forecasts are released from these assimilated initial states, the SWE anomaly distribution diverges rapidly from that of ERA40. No predictability is seen from one season to another. Strong links between European SWE distribution and the North Atlantic Oscillation (NAO) are seen, but forecasts of this index by the assimilation scheme are poor. Longer term relationships between SWE and the NAO, and SWE and the El Ni\~no-Southern Oscillation (ENSO) are also investigated in a multi-century run of HadCM3. SWE is impacted by ENSO in the Himalayas and North America, while the NAO affects SWE in North America and Europe. While significant connections with the NAO index were only present in DJF (and to an extent SON), the link between ENSO and February SWE distribution was seen to exist from the previous JJA ENSO index onwards. This represents a long lead time for SWE prediction for hydrological applications such as flood and wildfire forecasting. Further work is required to develop reliable large scale observation-based SWE datasets with which to test these model-derived connections.
Resumo:
To construct Biodiversity richness maps from Environmental Niche Models (ENMs) of thousands of species is time consuming. A separate species occurrence data pre-processing phase enables the experimenter to control test AUC score variance due to species dataset size. Besides, removing duplicate occurrences and points with missing environmental data, we discuss the need for coordinate precision, wide dispersion, temporal and synonymity filters. After species data filtering, the final task of a pre-processing phase should be the automatic generation of species occurrence datasets which can then be directly ’plugged-in’ to the ENM. A software application capable of carrying out all these tasks will be a valuable time-saver particularly for large scale biodiversity studies.
Resumo:
BACKGROUND: The serum peptidome may be a valuable source of diagnostic cancer biomarkers. Previous mass spectrometry (MS) studies have suggested that groups of related peptides discriminatory for different cancer types are generated ex vivo from abundant serum proteins by tumor-specific exopeptidases. We tested 2 complementary serum profiling strategies to see if similar peptides could be found that discriminate ovarian cancer from benign cases and healthy controls. METHODS: We subjected identically collected and processed serum samples from healthy volunteers and patients to automated polypeptide extraction on octadecylsilane-coated magnetic beads and separately on ZipTips before MALDI-TOF MS profiling at 2 centers. The 2 platforms were compared and case control profiling data analyzed to find altered MS peak intensities. We tested models built from training datasets for both methods for their ability to classify a blinded test set. RESULTS: Both profiling platforms had CVs of approximately 15% and could be applied for high-throughput analysis of clinical samples. The 2 methods generated overlapping peptide profiles, with some differences in peak intensity in different mass regions. In cross-validation, models from training data gave diagnostic accuracies up to 87% for discriminating malignant ovarian cancer from healthy controls and up to 81% for discriminating malignant from benign samples. Diagnostic accuracies up to 71% (malignant vs healthy) and up to 65% (malignant vs benign) were obtained when the models were validated on the blinded test set. CONCLUSIONS: For ovarian cancer, altered MALDI-TOF MS peptide profiles alone cannot be used for accurate diagnoses.
Resumo:
A new approach is presented that simultaneously deals with Misreporting and Don't Know (DK) responses within a dichotomous-choice contingent valuation framework. Utilising a modification of the standard Bayesian Probit framework, a Gibbs with Metropolis-Hastings algorithm is used to estimate the posterior densities for the parameters of interest. Several model specifications are applied to two contingent valuation datasets: one on wolf management plans, and one on the US Fee Demonstration Program. We find that DKs are more likely to be from people who would be predicted to have positive utility for the bid. Therefore, a DK is more likely to be a YES than a NO. We also find evidence of misreporting, primarily in favour of the NO option. The inclusion of DK responses has an unpredictable impact on willingness-to-pay estimates, since it impacts differently on the results for the two datasets we examine. Copyright (C) 2009 John Wiley & Sons, Ltd.