925 resultados para Data clustering. Fuzzy C-Means. Cluster centers initialization. Validation indices
Resumo:
The growing need to assess the environmental status of the Mediterranean coastal marine habitats and the large availability of data collected by Reef Check Italia onlus (RCI) volunteers suggest the possibility to develop innovative and reliable indices that may support decision makers in applying conservation strategies. The aims of this study were to check the reliability of data collected by RCI volunteers, analyse the spatial and temporal distribution of RCI available data, resume the knowledge on the biology and ecology of the monitored species, and develop innovative indices to asses the ecological quality of Mediterranean subtidal rocky shores and coralligenous habitats. Subtidal rocky shores and coralligenous were chosen because these are the habitats more attractive for divers; therefore mlst data are referring to them, moreover subtidal rocky bottom are strongly affected by coastal urbanisation, land use, fishing and tourist activities, that increase pollution, turbidity and sedimentation. Non-indigenous species (NIS) have been recognized as a major threat to the integrity of Mediterranean native communities because of their proliferation, spread and impact on resident communities. Monitoring of NIS’ spreading dynamics at the basin spatial scale is difficult but urgent. According to a field test, the training provided by RCI appears adequate to obtain reliable data by volunteers. Based on data collected by RCI volunteers, three main categories of indices were developed: indices based on species diversity, indices on the occurrence non-indigenous species, and indices on species sensitive toward physical, chemical and biological disturbances. As case studies, indices were applied to stretches of coastline defined according to management criteria (province territories and marine protected areas). The assessments of ecological quality in the Tavolara Marine Protected Area using the species sensitivities index were consisten with those previously obtained with traditional methods.
Resumo:
BACKGROUND AND PURPOSE: Perfusion CT (P-CT) is used for acute stroke management, not, however, for evaluating epilepsy. To test the hypothesis that P-CT may identify patients with increased regional cerebral blood flow during subtle status epilepticus (SSE), we compared P-CT in SSE to different postictal conditions. METHODS: Fifteen patients (mean age 47 years, range 21-74) underwent P-CT immediately after evaluation in our emergency room. Asymmetry indices between affected and unaffected hemispheres were calculated for regional cerebral blood volume (rCBV), regional cerebral blood flow (rCBF), and mean transit time (MTT). Regional perfusion changes were compared to EEG findings. RESULTS: Three patients in subtle status epilepticus (group 1) had increased regional perfusion with electro-clinical correlate. Six patients showed postictal slowing on EEG corresponding to an area of regional hypoperfusion (group 2). CT and EEG were normal in six patients with a first epileptic seizure (group 3). Cluster analysis of asymmetry indices separated SSE from the other two groups in all three parameters, while rCBF helped to distinguish between chronic focal epilepsies and single events. CONCLUSION: Preliminary results indicate that P-CT may help to identify patients with SSE during emergency workup. This technique provides important information to neurologists or emergency physicians in the difficult clinical differential diagnosis of altered mental status due to subtle status epilepticus.
Resumo:
1. When entomophilous plants are introduced to a new region, they may leave behind their usual pollinators. In particular, plant species with specialized pollination may then be less likely to establish and spread (i.e. become invasive). Moreover, other reproductive characteristics such as self-compatibility and flowering duration may also affect invasion success. 2. Here, we specifically asked whether plant species' specialization towards pollinator species and families, respectively, as measured in the native range, self-compatibility, flowering duration and their interactions are related to the degree of invasion (i.e. a measure of regional abundance) in non-native regions. 3. We used plant–pollinator interaction data from 119 German grassland sites to calculate unbiased indices of plant specialization towards pollinator species and families for 118 European plant species. We related these specialization indices, flowering duration, self-compatibility and their interactions to the degree of invasion of each species in seven large countries on four non-Eurasian continents. 4. In all models, plant species with long flowering durations had the highest degree of invasion. The best model included the specialization index based on pollinator species instead of the one based on pollinator families. Specialization towards pollinator species had a marginally significant positive effect on the degree of invasion in non-native regions for self-compatible, but not for self-incompatible species. 5. Synthesis. We showed that long flowering duration is related to the degree of invasion in other parts of the world, and a trend that pollinator generalization in the native range may interact with self-compatibility in determining the degree of invasion. Therefore, we conclude that such reproductive characteristics should be considered in risk assessment and management of introduced plant species.
Resumo:
PURPOSE To extend the capabilities of the Cone Location and Magnitude Index algorithm to include a combination of topographic information from the anterior and posterior corneal surfaces and corneal thickness measurements to further improve our ability to correctly identify keratoconus using this new index: ConeLocationMagnitudeIndex_X. DESIGN Retrospective case-control study. METHODS Three independent data sets were analyzed: 1 development and 2 validation. The AnteriorCornealPower index was calculated to stratify the keratoconus data from mild to severe. The ConeLocationMagnitudeIndex algorithm was applied to all tomography data collected using a dual Scheimpflug-Placido-based tomographer. The ConeLocationMagnitudeIndex_X formula, resulting from analysis of the Development set, was used to determine the logistic regression model that best separates keratoconus from normal and was applied to all data sets to calculate PercentProbabilityKeratoconus_X. The sensitivity/specificity of PercentProbabilityKeratoconus_X was compared with the original PercentProbabilityKeratoconus, which only uses anterior axial data. RESULTS The AnteriorCornealPower severity distribution for the combined data sets are 136 mild, 12 moderate, and 7 severe. The logistic regression model generated for ConeLocationMagnitudeIndex_X produces complete separation for the Development set. Validation Set 1 has 1 false-negative and Validation Set 2 has 1 false-positive. The overall sensitivity/specificity results for the logistic model produced using the ConeLocationMagnitudeIndex_X algorithm are 99.4% and 99.6%, respectively. The overall sensitivity/specificity results for using the original ConeLocationMagnitudeIndex algorithm are 89.2% and 98.8%, respectively. CONCLUSIONS ConeLocationMagnitudeIndex_X provides a robust index that can detect the presence or absence of a keratoconic pattern in corneal tomography maps with improved sensitivity/specificity from the original anterior surface-only ConeLocationMagnitudeIndex algorithm.
Resumo:
The consistency of an existing reconstructed annual (December–November) temperature series for the Lisbon region (Portugal) from 1600 onwards, based on a European-wide reconstruction, with (1) five local borehole temperature–depth profiles; (2) synthetic temperature– depth profiles, generated from both reconstructed temperatures and two regional paleoclimate simulations in Portugal; (3) instrumental data sources over the twentieth century; and (4) temperature indices from documentary sources during the late Maunder Minimum (1675–1715) is assessed. The low-frequency variability in the reconstructed temperature in Portugal is not entirely consistent with local borehole temperature–depth profiles and with the simulated response of temperature in two regional paleoclimate simulations driven by reconstructions of various climate forcings. Therefore, the existing reconstructed series is calibrated by adjusting its low-frequency variability to the simulations (first-stage adjustment). The annual reconstructed series is then calibrated in its location and scale parameters, using the instrumental series and a linear regression between them (second-stage adjustment). This calibrated series shows clear footprints of the Maunder and Dalton minima, commonly related to changes in solar activity and explosive volcanic eruptions, and a strong recent-past warming, commonly related to human-driven forcing. Lastly, it is also in overall agreement with annual temperature indices over the late Maunder Minimum in Portugal. The series resulting from this post-reconstruction adjustment can be of foremost relevance to improve the current understanding of the driving mechanisms of climate variability in Portugal.
Resumo:
In 2005, the International Ocean Colour Coordinating Group (IOCCG) convened a working group to examine the state of the art in ocean colour data merging, which showed that the research techniques had matured sufficiently for creating long multi-sensor datasets (IOCCG, 2007). As a result, ESA initiated and funded the DUE GlobColour project (http://www.globcolour.info/) to develop a satellite based ocean colour data set to support global carbon-cycle research. It aims to satisfy the scientific requirement for a long (10+ year) time-series of consistently calibrated global ocean colour information with the best possible spatial coverage. This has been achieved by merging data from the three most capable sensors: SeaWiFS on GeoEye's Orbview-2 mission, MODIS on NASA's Aqua mission and MERIS on ESA's ENVISAT mission. In setting up the GlobColour project, three user organisations were invited to help. Their roles are to specify the detailed user requirements, act as a channel to the broader end user community and to provide feedback and assessment of the results. The International Ocean Carbon Coordination Project (IOCCP) based at UNESCO in Paris provides direct access to the carbon cycle modelling community's requirements and to the modellers themselves who will use the final products. The UK Met Office's National Centre for Ocean Forecasting (NCOF) in Exeter, UK, provides an understanding of the requirements of oceanography users, and the IOCCG bring their understanding of the global user needs and valuable advice on best practice within the ocean colour science community. The three year project kicked-off in November 2005 under the leadership of ACRI-ST (France). The first year was a feasibility demonstration phase that was successfully concluded at a user consultation workshop organised by the Laboratoire d'Océanographie de Villefranche, France, in December 2006. Error statistics and inter-sensor biases were quantified by comparison with insitu measurements from moored optical buoys and ship based campaigns, and used as an input to the merging. The second year was dedicated to the production of the time series. In total, more than 25 Tb of input (level 2) data have been ingested and 14 Tb of intermediate and output products created, with 4 Tb of data distributed to the user community. Quality control (QC) is provided through the Diagnostic Data Sets (DDS), which are extracted sub-areas covering locations of in-situ data collection or interesting oceanographic phenomena. This Full Product Set (FPS) covers global daily merged ocean colour products in the time period 1997-2006 and is also freely available for use by the worldwide science community at http://www.globcolour.info/data_access_full_prod_set.html. The GlobColour service distributes global daily, 8-day and monthly data sets at 4.6 km resolution for, chlorophyll-a concentration, normalised water-leaving radiances (412, 443, 490, 510, 531, 555 and 620 nm, 670, 681 and 709 nm), diffuse attenuation coefficient, coloured dissolved and detrital organic materials, total suspended matter or particulate backscattering coefficient, turbidity index, cloud fraction and quality indicators. Error statistics from the initial sensor characterisation are used as an input to the merging methods and propagate through the merging process to provide error estimates for the output merged products. These error estimates are a key component of GlobColour as they are invaluable to the users; particularly the modellers who need them in order to assimilate the ocean colour data into ocean simulations. An intensive phase of validation has been undertaken to assess the quality of the data set. In addition, inter-comparisons between the different merged datasets will help in further refining the techniques used. Both the final products and the quality assessment were presented at a second user consultation in Oslo on 20-22 November 2007 organised by the Norwegian Institute for Water Research (NIVA); presentations are available on the GlobColour WWW site. On request of the ESA Technical Officer for the GlobColour project, the FPS data set was mirrored in the PANGAEA data library.
Resumo:
El transporte aéreo constituye un sector estratégico para el crecimiento económico de cualquier país. El sistema de gestión de tráfico aéreo ATM tiene como objetivo el movimiento seguro y eficiente de las aeronaves dentro del espacio aéreo y de los aeropuertos, siendo la seguridad, en la fase táctica, gestionada por el servicio de control de la circulación aérea. Mediante los procesos de control el tráfico aéreo es vigilado a través de sensores, regulado y guiado de forma organizada y segura. Es precisamente sobre la vigilancia donde se enfoca el contenido de la tesis, en el desarrollo de nuevos conceptos que proporcionen información de vigilancia de ‘bajo coste’ basados en las señales existentes proporcionadas por la infraestructura actual de radar secundario y por los sistemas de posicionamiento basados en satélite que utiliza la ADS-B. El conocimiento y acceso en tiempo real a las trayectorias de las aeronaves es un elemento de valor añadido no sólo para la provisión de los servicios de control de tránsito aéreo, sino para todos los actores del transporte aéreo o de la investigación, siendo uno de los elementos clave en el concepto operacional de los dos grandes proyectos tecnológicos, SESAR en Europa y NextGen en EE.UU.. En las últimas décadas el control de la circulación aérea en espacios aéreos de media y alta densidad de tráfico se ha basado en tecnologías complejas que requieren importantes infraestructuras como son el radar primario de vigilancia (PSR) y el radar secundario de vigilancia (SSR). La filosofía de los programas SESAR y NextGen siguiendo las directrices de la OACI es la de alejarse de las tecnologías basadas en tierra para evolucionar hacia nuevas tecnologías más dinámicas basadas en satélite como la ADS-B. Pero hasta que la implementación y operación de la ADS-B sea completa, existirá un período de transición que implica la coexistencia de aeronaves equipadas o no con ADS-B. El objetivo de la presente Tesis es determinar las metodologías y algoritmos más adecuados para poder hibridar las dos tecnologías descritas anteriormente, utilizando para ello un receptor de bajo coste con antena estática omnidireccional, que analice todas las señales presentes en el canal que comparten el SSR y ADS-B. Mediante esta hibridación se podrá obtener la posición de cualquier aeronave que transmita respuestas a interrogaciones SSR, en cualquiera de sus modos de trabajo, o directamente mensajes de posición ADS-B. Para desarrollar los algoritmos propuestos, además del hardware correspondiente, se han utilizado las aplicaciones LabVIEW para funciones de adquisición de datos reales, y el software MATLAB® para el desarrollo de algoritmos y análisis de datos. La validación de resultados se ha realizado mediante los propios mensajes de posición ADS-B y a través de las trazas radar proporcionadas por la entidad pública empresarial ENAIRE. La técnica desarrollada es autónoma, y no ha requerido de ninguna otra entrada que no sea la recepción omnidireccional de las señales. Sin embargo para la validación de resultados se ha utilizado información pública de las ubicaciones de la red de estaciones SSR desplegadas sobre territorio español y portugués y trazas radar. Los resultados obtenidos demuestran, que con técnicas basadas en superficies de situación definidas por los tiempos de llegada de las respuestas, es posible determinar con una precisión aceptable la posición de las estaciones SSR y la posición de cualquier aeronave que responda mediante el Modo A a éstas. ABSTRACT Air transport is a strategic sector for the economic growth of any country. The air traffic management system (ATM) aims at the safe and efficient movement of aircraft while operating within the airspace and airports, where safety, in the tactical phase, is managed by the air traffic control services. Through the air traffic control processes, aircraft are monitored by sensors, regulated and guided in an organized and safe manner. It is precisely on surveillance where this thesis is focused, developing new concepts that provide a 'low cost' surveillance information based on existing signals provided by currently secondary radar infrastructure and satellite-based positioning systems used by ADS-B. Having a deeper knowledge and a real-time access to the trajectories of the aircraft, is an element of added value not only for the provision of air traffic control services, but also for all air transport or research actors. This is one of the key elements in the operational concept proposed by the two large scale existing technological projects, SESAR in Europe and NextGen in the US. In recent decades, air traffic control in medium and high traffic density areas has been based on complex technologies requiring major infrastructures, such as the primary surveillance radar (PSR) and secondary surveillance radar (SSR). The philosophy of SESAR and NextGen programs, both following the guidelines of ICAO, is to move away from land-based technologies and evolving into some new and more dynamic satellite-based technologies such as ADS-B. Nevertheless, until the ADS-B implementation and operation is fully achieved, there will be a transitional period where aircraft with and without ADS-B equipment will have to coexist. The main objective of this thesis is to determine those methodologies and algorithms which are considered more appropriate to hybridize those two technologies, by using a low cost omnidirectional receiver, which analyzes all signals on the SSR and ADS-B shared channel. Through this hybridization, it is possible to obtain the position of any aircraft answering the SSR interrogations, in any of its modes of operation, or through the emission of ADS-B messages. To develop the proposed algorithms, LabVIEW application has been used for real-time data acquisition, as well as MATLAB software for algorithm development and data analysis, together with the corresponding hardware. The validation of results was performed using the ADS-B position messages and radar tracks provided by the Public Corporate Entity ENAIRE The developed technique is autonomous, and it does not require any other input other than the omnidirectional signal reception. However, for the validation of results, not only radar records have been used, but also public information regarding the position of SSR stations spread throughout the Spanish and Portuguese territory. The results show that using techniques based in the definition of positioning surfaces defined by the responses’ times of arrival, it is possible to determine with an acceptable level of accuracy both the position of the SSR stations as well as the position of any aircraft which transmits Mode A responses.
Resumo:
Objective: To develop a standard weight descriptor that can be used for estimation of patient size for obese patients. Patients and methods: Data were available from 3849 patients: 2839 from oncology patients (index data set) and 1010 from general medical patients (validation data set). The patients had a wide range of age (16-100 years), weight (25-165kg) and body mass index (BMI) [12-52 kg/m(2)] in both data sets. From the normal-weight patients in the oncology data set, an equation for male and female patients was developed to predict their normal weight as the sum of the lean body mass and normal fat body mass. The equations were evaluated by predicting the weight of patients in the general medical data set who had a normal BMI (30 kg/m(2)).
Resumo:
Data obtained from a manufacturing firm and a newspaper firm in India were used to examine the relationship between organizational politics and procedural justice in three separate studies. Study 1 constructively replicated research on the distinctiveness of the two constructs. Confirmatory factor analyses in which data from the manufacturing firm served as the development sample and data from the newspaper firm served as the validation sample demonstrated the distinctiveness of organizational politics and procedural justice. Study 2 examined the antecedents of the two constructs using data from the manufacturing firm. Structural equation modeling (SEM) results revealed formalization and participation in decision making to be positively related to procedural justice but negatively related to organizational politics. Further, authority hierarchy and spatial distance were positively related to organizational politics but unrelated to procedural justice. Study 3 examined the consequences of the two constructs in terms of task and contextual performance using data from the newspaper firm. Results of SEM analysis revealed procedural justice but not organizational politics to be related to task performance and the contextual performance dimensions of interpersonal facilitation and job dedication. © 2004 Elsevier Inc. All rights reserved.
Resumo:
This thesis introduces and develops a novel real-time predictive maintenance system to estimate the machine system parameters using the motion current signature. Recently, motion current signature analysis has been addressed as an alternative to the use of sensors for monitoring internal faults of a motor. A maintenance system based upon the analysis of motion current signature avoids the need for the implementation and maintenance of expensive motion sensing technology. By developing nonlinear dynamical analysis for motion current signature, the research described in this thesis implements a novel real-time predictive maintenance system for current and future manufacturing machine systems. A crucial concept underpinning this project is that the motion current signature contains information relating to the machine system parameters and that this information can be extracted using nonlinear mapping techniques, such as neural networks. Towards this end, a proof of concept procedure is performed, which substantiates this concept. A simulation model, TuneLearn, is developed to simulate the large amount of training data required by the neural network approach. Statistical validation and verification of the model is performed to ascertain confidence in the simulated motion current signature. Validation experiment concludes that, although, the simulation model generates a good macro-dynamical mapping of the motion current signature, it fails to accurately map the micro-dynamical structure due to the lack of knowledge regarding performance of higher order and nonlinear factors, such as backlash and compliance. Failure of the simulation model to determine the micro-dynamical structure suggests the presence of nonlinearity in the motion current signature. This motivated us to perform surrogate data testing for nonlinearity in the motion current signature. Results confirm the presence of nonlinearity in the motion current signature, thereby, motivating the use of nonlinear techniques for further analysis. Outcomes of the experiment show that nonlinear noise reduction combined with the linear reverse algorithm offers precise machine system parameter estimation using the motion current signature for the implementation of the real-time predictive maintenance system. Finally, a linear reverse algorithm, BJEST, is developed and applied to the motion current signature to estimate the machine system parameters.
Resumo:
Purpose - Food allergy can have a profound effect on quality of life (QoL) of the family. The Food Allergy Quality of Life—Parental Burden Questionnaire (FAQL-PB) was developed on a US sample to assess the QoL of parents with food allergic children. The aim of this study was to examine the reliability and validity of the FAQL-PB in a UK sample and to assess the effect of asking about parental burden in the last week compared with parental burden in general, with no time limit for recall given. Methods - A total of 1,200 parents who had at least one child with food allergy were sent the FAQL-PB and the Child Health Questionnaire (CHQ-PF50); of whom only 63 % responded. Results - Factor analysis of the FAQL-PB revealed two factors: limitations on life and emotional distress. The total scale and the two sub-scales had high internal reliability (all a > 0.85). There were small to moderate but significant correlations between total FAQL-PB scores and health and parental impact measures on the CHQ-PF50 (p < 0.01). Significantly greater parental burden was reported for the no-time limited compared with the time-limited version (p < 0.01). Conclusions - The FAQL-PB is a reliable and valid measure for use in the UK. The scale could be used in clinic to assess the physical and emotional quality of life in addition to the impact on total quality of life.
Resumo:
The optical illumination of a microstrip gap on a thick semiconductor substrate creates an inhomogeneous electron-hole plasma in the gap region. This allows the study of the propagation mechanism through the plasma region. This paper uses a multilayer plasma model to explain the origin of high losses in such structures. Measured results are shown up to 50 GHz and show good agreement with the simulated multilayer model. The model also allows the estimation of certain key parameters of the plasma, such as carrier density and diffusion length, which are difficult to measure by direct means. The detailed model validation performed here will enable the design of more complex microwave structures based on this architecture. While this paper focuses on monocrystalline silicon as the substrate, the model is easily adaptable to other semiconductor materials such as GaAs.
Resumo:
Este trabalho propõe um estudo de sinais cerebrais aplicados em sistemas BCI (Brain-Computer Interface - Interfaces Cérebro Computador), através do uso de Árvores de Decisão e da análise dessas árvores com base nas Neurociências. Para realizar o tratamento dos dados são necessárias 5 fases: aquisição de dados, pré-processamento, extração de características, classificação e validação. Neste trabalho, todas as fases são contempladas. Contudo, enfatiza-se as fases de classificação e de validação. Na classificação utiliza-se a técnica de Inteligência Artificial denominada Árvores de Decisão. Essa técnica é reconhecida na literatura como uma das formas mais simples e bem sucedidas de algoritmos de aprendizagem. Já a fase de validação é realizada nos estudos baseados na Neurociência, que é um conjunto das disciplinas que estudam o sistema nervoso, sua estrutura, seu desenvolvimento, funcionamento, evolução, relação com o comportamento e a mente, e também suas alterações. Os resultados obtidos neste trabalho são promissores, mesmo sendo iniciais, visto que podem melhor explicar, com a utilização de uma forma automática, alguns processos cerebrais.
Resumo:
The present work develops a methodology to establish a 3D digital static models petroleum reservoir analogue using LIDAR and GEORADAR technologies. Therefore, this work introduce The methodolgy as a new paradigm in the outcrop study, to purpose a consistent way to integrate plani-altimetric data, geophysics data, and remote sensing products, allowing 2D interpretation validation in contrast with 3D, complexes depositional geometry visualization, including in environmental immersive virtual reality. For that reason, it exposes the relevant questions of the theory of two technologies, and developed a case study using TerraSIRch SIR System-3000 made for Geophysical Survey Systems, and HDS3000 Leica Geosystems, using the two technologies, integrating them GOCAD software. The studied outcrop is plain to the view, and it s located at southeast Bacia do Parnaíba, in the Parque Nacional da Serra das Confusões. The methodology embraces every steps of the building process shows a 3D digital static models petroleum reservoir analogue, provide depositional geometry data, in several scales for Simulation petroleum reservoir