982 resultados para Damage tolerance, composites, VCCT, CZM
Resumo:
Central and peripheral tolerance prevent autoimmunity by deleting the most aggressive CD8(+) T cells but they spare cells that react weakly to tissue-restricted antigen (TRA). To reveal the functional characteristics of these spared cells, we generated a transgenic mouse expressing the TCR of a TRA-specific T cell that had escaped negative selection. Interestingly, the isolated TCR matches the affinity/avidity threshold for negatively selecting T cells, and when developing transgenic cells are exposed to their TRA in the thymus, only a fraction of them are eliminated but significant numbers enter the periphery. In contrast to high avidity cells, low avidity T cells persist in the antigen-positive periphery with no signs of anergy, unresponsiveness, or prior activation. Upon activation during an infection they cause autoimmunity and form memory cells. Unexpectedly, peptide ligands that are weaker in stimulating the transgenic T cells than the thymic threshold ligand also induce profound activation in the periphery. Thus, the peripheral T cell activation threshold during an infection is below that of negative selection for TRA. These results demonstrate the existence of a level of self-reactivity to TRA to which the thymus confers no protection and illustrate that organ damage can occur without genetic predisposition to autoimmunity.
Resumo:
In this paper we explore the possibility of improving, by genetic engineering, the resistance of insulin-secreting cells to the metabolic and inflammatory stresses that are anticipated to limit their function and survival when encapsulated and transplanted in a type 1 diabetic environment. We show that transfer of the Bcl-2 antiapoptotic gene, and of genes specifically interfering with cytokine intracellular signaling pathways, greatly improves resistance of the cells to metabolic limitations and inflammatory stresses.
Resumo:
Abstract The main thesis topic relates to the 'molecular mechanisms of penicillin-induced bacterial death. Indeed, bacteria have developed two principal mechanisms to escape the killing effect of ß-lactam antibiotics: resistance and tolerance. Resistant bacteria are characterized by their ability to grow in the presence of drug concentrations higher than the one inhibiting the growth of susceptible members of the same species. Hence, resistant bacteria have an increased minimal inhibitory concentration (MIC) of the drug. Nevertheless, when exposed to antibiotic concentrations exceeding their new MIC, resistant bacteria remain sensitive to the antibiotic killing effect. In contrast, tolerant bacteria have an unchanged MIC. However, they have a considerably increased ability to survive drug-induced killing, even at concentrations exceeding their MIC by several orders of magnitude. In other words, in the presence of the antibiotic, tolerant bacteria become persister cells which stop growing but are not killed. In the present thesis, it is shown that the survival phenotype of a tolerant Streptococcus gordonii strain depends on two components belonging to sugar metabolism pathways. First, the transcription factor CcpA which mediates a global regulatory mechanism allowing bacteria to utilize the most efficient sugar source for their growth. We show that the inactivation of the ccpA gene leads to a partial loss of penicillin tolerance both in vitro and in a rat model of experimental endocarditis. Second, the Enzyme I of the phosphotransferase system which is involved in the uptake and phosphorylation of sugars. Here, we -show that a single nucleotide mutation in ptsI, the gene encoding the Enzyme I, is sufficient to confer a fully tolerant phenotype in S. gordonii both in vivo and in vivo. The mutation results in a radical proline to arginine substitution in the C-terminal domain of the protein, probably leading to a decrease in its homodimerization and subsequent activity. Taken together our results prove that tolerance is a global survival mechanism linked to sugar metabolism. We hypothesize that, in the presence of the antibiotic, the already altered metabolic processes of the tolerant strain are completely inactivated. Hence, bacteria may enter in a dormant state and become insensitive to the bactericidal effect of ß-lactams, which depends on actively dividing cells. This thesis manuscript also contains two other side-projects. The first one establishes that the ability to form a biofilm is not a requisite for the successful establishment of endocarditis due to S. gordonii. The second one characterizes the S. gordonii a-phosphoglucomutase gene, and shows that its inactivation results in a loss of in vitro fitness and in vivo virulence. Résumé Le sujet principal de cette thèse concerne les mécanismes moléculaires de la mort bactérienne induite par la pénicilline. En effet, les bactéries ont développé deux mécanismes principaux pour échapper à l'effet bactéricide des ß-lactamines : la résistance et la tolérance. Les bactéries résistantes sont caractérisées par leur capacité de croître en présence de concentration d'antibiotiques plus élevées que celles inhibant la croissance des organismes sensibles de la même espèce. Les bactéries résistantes ont donc une augmentation de leur concentration minimale inhibitrice (CMI) à l'antibiotique. Néanmoins, quand elles sont exposées à des concentrations dépassant leur nouvelle CMI, elles restent sensibles à l'effet bactéricide. Au contraire, les bactéries tolérantes ont une CMI inchangée. Toutefois, elles ont une très importante capacité à survivre à l'effet bactéricide des ß-lactamines, ceci même à des concentrations excédant leur CMI de plusieurs ordres de grandeur. En d'autres termes, en présence de l'antibiotique, les bactéries tolérantes deviennent des cellules persistantes qui arrêtent leur croissance mais ne sont pas tuées. Dans la présente thèse, il est montré que le phénotype de survie d'un Streptococcus gordonii tolérant dépend de deux composants appartenant aux voies du métabolisme des sucres. Premièrement, le facteur de transcription CcpA qui contrôle un système global de régulation permettant à la bactérie d'utiliser les sources de sucre les plus efficaces pour sa croissance. Il est montré que l'inactivation du gène ccpA résulte en la perte partielle de la tolérance à la pénicilline aussi bien in vitro que dans un modèle d'endocardite expérimentale chez le rat. Deuxièmement, l'Enzyme I du système de phosphotransfert impliqué dans l'import et la phosphorylation des sucres. Nous montrons qu'une mutation ponctuelle d'un nucléotide dans ptsl, le gène codant pour l'Enzyme I, suffit à complètement conférer un phénotype tolérant chez S. gordonii aussi bien in vitro qu'in vivo. La mutation induit la substitution radicale d'une proline en une arginine dans le domaine C-terminal de la protéine, résultant probablement en une diminution de sa capacité d'homodimérisation et donc d'activité. Dans leur ensemble, nos résultats prouvent que la tolérance est un mécanisme global de survie lié au métabolisme des sucres. Nous présentons l'hypothèse que, en présence de l'antibiotique, les processus métaboliques déjà altérés de la souche tolérante deviennent complètement inactifs. En conséquence, les bactéries entreraient dans un état dormant nonréplicatif, devenant ainsi insensibles à l'effet bactéricide des ß-lactamines qui nécessite des cellules en cours de division active. Le manuscrit de cette thèse contient également deux projets secondaires. Le premier montre que la capacité de former un biofilm n'est pas un prérequis pour le succès de l'initiation de l'endocardite à S. gordonii. Le second caractérise le gène de l'a-phosphoglucomutase de S. gordonii et montre que son inactivation résulte en une perte de fitness in vitro et de virulence in vivo.
Resumo:
In this work, a previously-developed, statistical-based, damage-detection approach was validated for its ability to autonomously detect damage in bridges. The damage-detection approach uses statistical differences in the actual and predicted behavior of the bridge caused under a subset of ambient trucks. The predicted behavior is derived from a statistics-based model trained with field data from the undamaged bridge (not a finite element model). The differences between actual and predicted responses, called residuals, are then used to construct control charts, which compare undamaged and damaged structure data. Validation of the damage-detection approach was achieved by using sacrificial specimens that were mounted to the bridge and exposed to ambient traffic loads and which simulated actual damage-sensitive locations. Different damage types and levels were introduced to the sacrificial specimens to study the sensitivity and applicability. The damage-detection algorithm was able to identify damage, but it also had a high false-positive rate. An evaluation of the sub-components of the damage-detection methodology and methods was completed for the purpose of improving the approach. Several of the underlying assumptions within the algorithm were being violated, which was the source of the false-positives. Furthermore, the lack of an automatic evaluation process was thought to potentially be an impediment to widespread use. Recommendations for the improvement of the methodology were developed and preliminarily evaluated. These recommendations are believed to improve the efficacy of the damage-detection approach.
Resumo:
The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways.
Resumo:
This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.
Resumo:
We previously showed that exposure of 3D organotypic rat brain cell cultures to 1mM 2-methylcitrate (2-MCA) or 3-hydroxyglutarate (3- OHGA) every 12h over three days (DIV11-DIV14) results in ammonium accumulation and cell death. The aim of this study was to define the time course (every 24h) of the observed effects. Ammonium in culture medium already increased at DIV12 staying stable on the following days under 3-OHGA exposure, while it increased consecutively up to much higher levels under 2-MCA exposure. Lactate increase and glucose decrease were observed from DIV13 and DIV14, respectively. We conclude that ammonium accumulation precedes alterations of energy metabolism. As observed by immunohistochemistry glial cells were the predominant dying cells. Immunoblotting and immunohistochemistry with cell death specific markers (caspase-3, alpha-fodrin, LC3) showed that 2-MCA exposure significantly increased apoptosis on DIV14, but did not alter autophagy or necrosis. In contrast, 3-OHGA exposure substantially increased necrosis already from DIV13, while no change was observed for apoptosis and autophagy. In conclusion, ammonium accumulation, secondary disturbance of energy metabolism and glial cell death are involved in the neuropathogenesis ofmethylmalonic aciduria and glutaric aciduria type I. Interestingly, brain cells are dying by necrosis under 3-OHGA exposure and by apoptosis under 2-MCA exposure.
Resumo:
We have studied ischemic tolerance induced by the serine protease thrombin in two different models of experimental ischemia. In organotypic hippocampal slice cultures, we demonstrate that incubation with low doses of thrombin protects neurons against a subsequent severe oxygen and glucose deprivation. L-JNKI1, a highly specific c-jun N-terminal kinase (JNK) inhibitor, and a second specific JNK inhibitor, SP600125, prevented thrombin preconditioning (TPC). We also show that the exposure to thrombin increases the level of phosphorylated c-jun, the major substrate of JNK. TPC, in vivo, leads to significantly smaller lesion sizes after a 30-min middle cerebral artery occlusion (MCAo), and the preconditioned mice were better off in the three tests used to evaluate functional recovery. In accordance with in vitro results, TPC in vivo was prevented by administration of L-JNKI1, supporting a role for JNK in TPC. These results, from two different TPC models and with two distinct JNK inhibitors, show that JNK is likely to be involved in TPC.
Resumo:
The objective of this work was to develop a low-cost portable damage detection tool to assess and predict damage areas in highway bridges. The proposed tool was based on standard vibration-based damage identification (VBDI) techniques but was extended to a new approach based on operational traffic load. The methodology was tested using numerical simulations, laboratory experiments, and field testing.
Resumo:
Inhibitory receptors are involvedin the induction of T cell dysfunctionand exhaustion in chronic viral infectionsand in tumors. In the presentstudy, we analyzed the expressionpattern of 3 different inhibitory receptors(PD-1, Lag-3, 2B4) in a murine Bcell lymphoma model. Furthermore,we functionally characterized CD8+T cells expressing inhibitory receptorsfor cytokine production and proliferation.Expansion and secretion ofpro-inflammatory cytokines of CD8+T cells from lymphoma-bearing E-myc mice were significantly reducedcompared to the healthy controls.Similarly, expansion and effectorfunction of CD8+ TCR transgenic(p14) Tcells specific for the gp-33 antigenof lymphocytic choriomeningitisvirus (LCMV) was reduced inlymphoma-bearing E-myc mice afteractivation with LCMV. The functionalimpairment of CTL in the presenceof lymphoma was reversible aftertransfer to naive C57BL/6 recipients.In vitro co-culture experimentsrevealed that the proliferation ofanti-CD3-activated CD8+ T cellsfrom WT mice was significantly inhibitedby CD19+ lymphoma cellsfrom E-myc mice, whereas no inhibitionwas observed after co-culturewith normal B cells. Supernatants ofin vitro cultured lymphoma B cellsand blood sera from lymphoma-bearingE-myc mice significantly reducedT cell proliferation in vitro, ascompared to supernatants from normalB cells cultures or sera of healthyanimals. These experiments indicatethat the lymphoma B cells inactivateCTL by a soluble factor. Expressionanalysis of different important immunologicalcytokines revealed that themacrophage migration inhibitory factor(MIF) is selectively overexpressedin malignant B cells. This finding wasconfirmed by analyzing MIF proteinin culture supernatants and in celllysates. Therefore, lymphoma B cellsmay reduce T cell function and suppresslymphoma surveillance by secretionof MIF.
Resumo:
Background: The coagulation factor thrombin mediates ischemic neuronal deathand, at a low concentration, induces tolerance to ischemia.We investigated its modeof activation in ischemic neural tissue using an in vitro approach to distinguish therole of circulating coagulation factors from endogenous cerebral mechanisms. Wealso studied the signalling pathway downstream of thrombin in ischemia and afterthrombin preconditioning.Methods: Rat organotypic hippocampal slice cultures to 30 minute oxygen (5%)and glucose (1 mmol/L) deprivation (OGD).Results: Selective factor Xa (FXa) inhibition by fondaparinux during and afterOGD significantly reduced neuronal death in the CA1 after 48 hours. Thrombinactivity was increased in the medium 24 hours after OGD and this increasewas prevented by fondaparinux suggesting that FXa catalyzes the conversion ofprothrombin to thrombin in neural tissue after ischemia in vitro. Treatment withSCH79797, a selective antagonist of the thrombin receptor protease activatedreceptor-1 (PAR-1), significantly decreased neuronal cell death indicating thatthrombin signals ischemic damage via PAR-1. The JNK pathway plays an importantrole in cerebral ischemia and we observed activation of the JNK substrate,c-Jun in our model. Both the FXa inhibitor, fondaparinux and the PAR-1 antagonistSCH79797, decreased the level of phospho-c-Jun Ser73. After thrombin preconditioningc-Jun was activated by phosphorylation in the nuclei of neurons of the CA1.Treatment with a synthetic thrombin receptor agonist resulted in the same c-Junactivation profile and protection against subsequent OGD indicating that thrombinalso signals via PAR-1 and c-Jun in cell protection.Conclusion: These results indicate that FXa activates thrombin in cerebral ischemia,leading via PAR-1 to the activation of the JNK pathway resulting in neuronal death.Thrombin induced tolerance also involves PAR-1 and JNK, revealing commonfeatures in cell death and survival signalling.