806 resultados para DBD lamp
Resumo:
Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides' transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloroethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxicological risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change.
Resumo:
The Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) is associated with abrupt climate change, carbon cycle perturbation, ocean acidification, as well as biogeographic shifts in marine and terrestrial biota that were largely reversed as the climatic transient waned. We report a clear exception to the behavior of the PETM as a reversing climatic transient in the eastern North Atlantic (Deep-Sea Drilling Project Site 401, Bay of Biscay) where the PETM initiates a greatly prolonged environmental change compared to other places on Earth where records exist. The observed environmental perturbation extended well past the d13C recovery phase and up to 650 kyr after the PETM onset according to our extraterrestrial 3He-based age-model. We observe a strong decoupling of planktic foraminiferal d18O and Mg/Ca values during the PETM d13C recovery phase, which in combination with results from helium isotopes and clay mineralogy, suggests that the PETM triggered a hydrologic change in western Europe that increased freshwater flux and the delivery of weathering products to the eastern North Atlantic. This state change persisted long after the carbon-cycle perturbation had stopped. We hypothesize that either long-lived continental drainage patterns were altered by enhanced hydrological cycling induced by the PETM, or alternatively that the climate system in the hinterland area of Site 401 was forced into a new climate state that was not easily reversed in the aftermath of the PETM.
Resumo:
We studied two deep-sea cores from the Scotia Sea to reconstruct past atmospheric circulation in the southern hemisphere and to resolve a long-standing debate on the interpretation of magnetic susceptibility (MS) records in Southern Ocean (SO) sediment. High-sedimentation sites MD07-3134 (0.2 - 1.2 m/kyr) and MD07-3133 (0.3 - 2 m/kyr) cover the last 92.5 kyr and 36 kyr, respectively. Both exhibit a one-to-one coupling of the MS and Ca2+ signal to the non-sea salt (nss) Ca2+ signal of the EDML ice core, clearly identifying atmospheric circulation as means of distribution. Comparison of additional proxies also excludes major influence by volcanic sources, sea-ice, icebergs, or oceanic current transport. The close resemblance of the dust proxies over the last glacial cycle, in turn, allows for the establishment of an age model of unprecedented resolution and precision for SO deep-sea sediment because atmospheric transport involves no major leads or lags. This is of particular importance because MS is routinely measured on deep-sea cores in the SO but the sediments usually lack biogenic carbonate and therefore had only limited stratigraphic control so far. Southern South America (SSA) is the likely source of eolian material because Site MD07-3133, located closer to the continent, has slightly higher MS values than Site MD07-3134, and also the MS record of Patagonian Site SALSA shows comparable variability. Patagonia was the dust source for both the Scotia Sea and East Antarctica. Dust fluxes were several times higher during glacial times, when atmospheric circulation was either stronger or shifted in latitude, sea level was lowered, shelf surfaces were exposed, and environmental conditions in SSA were dominated by glaciers and extended outwash plains. Hence, MS records of SO deep-sea sediment are reliable tracers of atmospheric circulation, allowing for chronologically-constrained reconstructions of the circum Antarctic paleoclimate history.
Resumo:
Submarine permafrost degradation has been invoked as a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. Sediment drilled 52 m down from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Methane concentrations in the overlying unfrozen sediment were low (mean 20 µM) but higher in the underlying ice-bonded submarine permafrost (mean 380 µM). In contrast, sulfate concentrations were substantially higher in the unfrozen sediment (mean 2.5 mM) than in the underlying submarine permafrost (mean 0.1 mM). Using deduced permafrost degradation rates, we calculate potential mean methane efflux from degrading permafrost of 120 mg/m**2 per year at this site. However, a drop of methane concentrations from 190 µM to 19 µM and a concomitant increase of methane d13C from -63 per mil to -35 per mil directly above the ice-bonded permafrost suggest that methane is effectively oxidized within the overlying unfrozen sediment before it reaches the water column. High rates of methane ebullition into the water column observed elsewhere are thus unlikely to have ice-bonded permafrost as their source.
Resumo:
The terrigenous mineral fraction of sediments recovered by drilling during Ocean Drilling Program Leg 167 at Sites 1018 and 1020 is used to evaluate changes in the source and transport of fine-grained terrigenous sediment and its relation to regional climates and the paleoceanographic evolution of the California Current system during the late Pleistocene. Preliminary time scales developed by correlation of oxygen isotope stratigraphies with the global SPECMAP record show average linear sedimentation rates in excess of 100 m/m.y., which provide an opportunity for high-resolution studies of terrigenous flux, grain size, and mineralogy. The mass flux of terrigenous minerals at Site 1018 varies from 5 to 30 g/(cm**2 x k.y.) and displays a general trend toward increased flux during glacials. The terrigenous record at Site 1020 shows a similar pattern of increased glacial input, but overall accumulation rates are significantly lower. Spectral analysis demonstrates that most of this variability is concentrated in frequency bands related to orbital cycles of eccentricity, tilt, and precession. Detailed grain-size analysis performed on the isolated terrigenous mineral fraction shows that sediments from Site 1018 are associated with higher energy transport and depositional regimes than those found at Site 1020. Grain-size data are remarkably uniform throughout the last 500 k.y., with no discernible difference observed between glacial and interglacial size distributions within each site. X-ray diffraction analysis of the <2-µm clay component suggests that the deposition of minerals found at Site 1020 is consistent with transport from a southern source during intervals of increased terrigenous input.
Resumo:
Humidity and wet and dry bulk densities were determined for bottom sediments of the Lena River marginal filter within a 700 km section from the outer boundary of the river delta. Earlier determinations of suspended matter concentration in water, material and grain-size composition and age of sediments were made along the same section. Sediment matter fluxes (accumulation rates), their changes in space and time (about 14 ka) were inferred from measurements of physical parameters. A correlation was found between the physical parameters of bottom sediments and changes in the Lena river marginal filter including those caused by sea-level fluctuations.
Resumo:
The record of eolian deposition on the Ontong Java Plateau (OJP) since the Oligocene (approximately 33 Ma) has been investigated using dust grain size, dust flux, and dust mineralogy, with the goal of interpreting the paleoclimatology and paleometeorology of the western equatorial Pacific. Studies of modern dust dispersal in the Pacific have indicated that the equatorial regions receive contributions from both the Northern Hemisphere westerly winds and the equatorial easterlies; limited meteorological data suggest that low-altitude westerlies could also transport dust to OJP from proximal sources in the western Pacific. Previous studies have established the characteristics of the grain-size, flux, and mineralogy records of dust deposited in the North Pacific by the mid-latitude westerlies and in the eastern equatorial Pacific by the low-latitude easterlies since the Oligocene. By comparing the OJP records with the well-defined records of the mid-latitude westerlies and the low-latitude easterlies, the importance of multiple sources of dust to OJP can be recognized. OJP dust is composed of quartz, illite, kaolinite/chlorite, plagioclase feldspar, smectite, and heulandite. Mineral abundance profiles and principal components analysis (PCA) of the mineral abundance data have been used to identify assemblages of minerals that covary through all or part of the OJP record. Abundances of quartz, illite, and kaolinite/chlorite covary throughout the interval studied, defining a mineralogical assemblage supplied from Asia. Some plagioclase and smectite were also supplied as part of this assemblage during the late Miocene and Pliocene/Pleistocene, but other source areas have supplied significant amounts of plagioclase, smectite, and heulandite to OJP since the Oligocene. OJP dust is generally coarser than dust deposited by the Northern Hemisphere westerlies or the equatorial easterlies, and it accumulates more rapidly by 1-2 orders of magnitude. These relationships indicate the importance of the local sources on dust deposition at OJP. The grain-size and flux records of OJP dust do not exhibit most of the events observed in the corresponding records of the Northern Hemisphere westerlies or the equatorial easterlies, because these features are masked by the mixing of dust from several sources at OJP. The abundance record of the Asian dust assemblage at OJP, however, does contain most of the features characteristic of dust flux by means of the Northern Hemisphere westerlies, indicating that the paleoclimatic and paleometeorologic signal of a particular source area and wind system can be preserved in areas well beyond the region dominated by that source and those winds. Identifying such a signal requires "unmixing" the various dust assemblages, which can be accomplished by combining grain-size, flux, and mineralogic data.
Resumo:
High-resolution analyses of sediments at equatorial Atlantic Sites 662, 663, and 664 define the accumulation rates of biogenically produced CaC03 and opal and of eolian dust from North Africa over the last 3.7 m.y. The mean flux of opal increased abruptly by 60%-70% near 2.5 Ma (2.65 to 2.3 Ma), reflecting pulses of increased opal productivity along the equator due mainly to increased upwelling. The mean winter-plume dust influx from Sahelian and Saharan Africa also increased at this time by between 35% and 75%, following smaller increases earlier in the late Pliocene. The increased opal flux implies a stronger zonal component of the southern trade winds in Southern Hemisphere winter. Consistent with this wind configuration, the stronger dust flux suggests a weaker southwesterly monsoonal flow into Africa in Northern Hemisphere summer, thus increasing Sahelian aridity and winter-plume dust fluxes. Dust fluxes to the equator may possibly have also been enhanced by stronger Northern Hemisphere winter trade winds and a more southerly position of the Intertropical Convergence Zone over Africa. These late Pliocene biogenic and terrigenous flux changes coincided with the appearance of Northern Hemisphere ice sheets, implying an ultimate causal link. The immediate control on changes in tropical circulation may, however, have been changes in the Atlantic sector of the Southern Ocean. A steady background trend of increasing winter-plume dust flux occurred from the late Pliocene until the middle Pleistocene. This may reflect a progressive, tectonically induced aridification of northern and eastern Africa because of the gradual uplift of the Tibetan Plateau.
Resumo:
The post-middle Miocene evolution of sedimentary patterns in the eastern equatorial Pacific Ocean has been deduced from a compilation and synthesis of CaCO3, opal, and nannofossil assemblage data from 11 sites drilled during Leg 138. Improvements in stratigraphic correlation and time scale development enabled the construction of lithostratigraphic and chronostratigraphic frameworks of exceptional quality. These frameworks, and the high sedimentation rates (often exceeding 4 cm/k.y.) provided a detailed and synoptic paleoceanographic view of a large and highly productive region. The three highlights that emerge are: (1) a middle late Miocene "carbonate crash" (Lyle et al., this volume); (2) a late Miocene-early Pliocene "biogenic bloom"; and (3) an early Pliocene "opal shift". During the carbonate crash, an interval of dissolution extending from -11.2 to 7.5 Ma, CaCO3 accumulation rates declined to near zero over much of the eastern equatorial Pacific, whereas opal accumulation rates remained substantially unchanged. The crash nadir, near 9.5 Ma, was marked by a brief shoaling of the regional carbonate compensation depth by more than 1400 m. The carbonate crash has been correlated over the entire tropical Pacific Ocean, and has been attributed to tectonically-induced changes in abyssal flow through the Panamanian seaway. The biogenic bloom extended from 6.7 to 4.5 Ma, and was characterized by an overall increase in biogenic accumulation and by a steepening of the latitudinal accumulation gradient toward the equator. The bloom has been observed over a large portion of the global ocean and has been linked to increased productivity. The final highlight, is a distinct and permanent shift in the locus of maximum opal mass accumulation rate at 4.4 Ma. This shift was temporally, and perhaps causally, linked to the final closure of the Panamanian seaway. Before 4.4 Ma, opal accumulation was greatest in the eastern equatorial Pacific Basin (near 0°N, 107°W). Since then, the highest opal fluxes in the equatorial Pacific have occurred in the Galapagos region (near 3°S, 92°W).
Resumo:
In the austral summer of 2006/7 the ANDRILL MIS (ANtarctic geological DRILLing- McMurdo Ice Shelf) project recovered a 1285 m sediment core from beneath the Ross Ice Shelf near Hut Point Peninsula, Ross Island, Antarctica in a flexural moat associated with the volcanic loading of Ross Island. Contained within the upper ~600 m of this core are sediments recording 38 glacial to interglacial cycles of Early Pliocene to Pleistocene time, including 13 discrete diatomite units (DU). The longest of these, DU XI, is ~76 m thick, contains two distinct unconformities marked by layers of volcanic brecciated sands, and has been assigned an Early to Mid-Pliocene age (5-3 Ma). A detailed record (avg. sample spacing of 33 cm) of the siliceous microfossil assemblages have been generated for DU XI and used in conjunction with geochemical and sedimentological data to subdivide DU XI into four discrete subunits of continuous sedimentation. Within each unit, changes in diatom assemblages have been correlated with the d18O record, providing a temporal resolution as high as 600 yr, and allowing for the construction of a detailed age model and calculation of associated sediment accumulation rates within DU XI. Results indicate a productivity-dominated sedimentary record with higher sediment accumulation rates containing a greater proportion of hemipelagic mud occurring during relatively cool periods and reduced accumulation during warmer intervals. This implies that even during periods of substantial warmth, Milankovitch-paced changes in Antarctic ice volume can be linked to ecological changes recorded as shifts in diatom assemblages.
Resumo:
The overarching goal of the Yamal portion of the Greening of the Arctic project is to examine how the terrain and anthropogenic factors of reindeer herding and resource development combined with the climate variations on the Yamal Peninsula affect the spatial and temporal patterns of vegetation change and how these changes are in turn affecting traditional herding of the indigenous people of the region. The purpose of the expeditions was to collect groundobservations in support of remote sensing studies at four locations along a transect that traverses all the major bioclimate subzones of the Yamal Peninsula. This data report is a summary of information collected during the 2007 and 2008 expeditions. It includes all the information from the 2008 data report (Walker et al. 2008) plus new information collected at Kharasavey in Aug 2008. The locations included in this report are Nadym (northern taiga subzone), Laborovaya (southern tundra = subzone E of the Circumpolar Arctic Vegetation Map (CAVM), Vaskiny Dachi (southern typical tundra = subzone D), and Kharasavey (northern typical tundra = subzone C). Another expedition is planned for summer 2009 to the northernmost site at Belyy Ostrov (Arctic tundra = subzone B). Data are reported from 10 study sites - 2 at Nadym, 2 at Laborovaya, and 3 at Vaskiny Dachi and 3 at Kharasavey. The sites are representative of the zonal soils and vegetation, but also include variation related to substrate (clayey vs. sandy soils). Most of the information was collected along 5 transects at each sample site, 5 permanent vegetation study plots, and 1-2 soil pits at each site. The expedition also established soil and permafrost monitoring sites at each location. This data report includes: (1) background for the project, (2) general descriptions and photographs of each locality and sample site, (3) maps of the sites, study plots, and transects at each location, (4) summary of sampling methods used, (5) tabular summaries of the vegetation data (species lists, estimates of cover abundance for each species within vegetation plots, measured percent ground cover of species along transects, site factors for each study plot), (6) summaries of the Normalized Difference Vegetation Index (NDVI) and leaf area index (LAI) along each transect, (7) soil descriptions and photos of the soil pits at each study site, (8) summaries of thaw measurements along each transect, and (9) contact information for each of the participants. One of the primary objectives was to provide the Russian partners with full documentation of the methods so that Russian observers in future years could repeat the observations independently.