774 resultados para Cycling wind loading
Resumo:
Both continuum and emission line flickering are phenomena directly associated with the mass-accretion process. In this work we simulated accretion-disk Doppler maps, including the effects of winds and flickering flares. Synthetic flickering Doppler maps were calculated and the effect of the flickering parameters on the maps was explored. Jets and winds occur in many astrophysical objects where accretion disks are present. Jets are generally absent among the cataclysmic variables (CVs), but there is evidence of mass loss by wind in many objects. CVs are ideal objects to study accretion disks, and consequently to study the wind associated with these disks. We also present simulations of accretion disks, including the presence of a wind with orbital phase resolution. Synthetic Ha line profiles in the optical region were obtained and their corresponding Doppler maps were calculated. The effect of the wind simulation parameters on the wind line profiles was also explored. From this study we verified that optically thick lines and/or emission by diffuse material into the primary Roche lobe are necessary to generate single peaked line profiles, often seen in CVs. The future accounting of these effects is suggested for interpreting Doppler tomography reconstructions.
Resumo:
The study of Wolf-Rayet stars plays an important role in evolutionary theories of massive stars. Among these objects, similar to 20 per cent are known to be in binary systems and can therefore be used for the mass determination of these stars. Most of these systems are not spatially resolved and spectral lines can be used to constrain the orbital parameters. However, part of the emission may originate in the interaction zone between the stellar winds, modifying the line profiles and thus challenging us to use different models to interpret them. In this work, we analysed the He II lambda 4686 angstrom + C IV lambda 4658 angstrom blended lines of WR 30a (WO4+O5) assuming that part of the emission originate in the wind-wind interaction zone. In fact, this line presents a quiescent base profile, attributed to the WO wind, and a superposed excess, which varies with the orbital phase along the 4.6-d period. Under these assumptions, we were able to fit the excess spectral line profile and central velocity for all phases, except for the longest wavelengths, where a spectral line with constant velocity seems to be present. The fit parameters provide the eccentricity and inclination of the binary orbit, from which it is possible to constrain the stellar masses.
Resumo:
By means of numerical simulations, we investigate magnetized stellar winds of pre-main-sequence stars. In particular, we analyze under which circumstances these stars will present elongated magnetic features (e.g., helmet streamers, slingshot prominences, etc). We focus on weak-lined T Tauri stars, as the presence of the tenuous accretion disk is not expected to have strong influence on the structure of the stellar wind. We show that the plasma-beta parameter (the ratio of thermal to magnetic energy densities) is a decisive factor in defining the magnetic configuration of the stellar wind. Using initial parameters within the observed range for these stars, we show that the coronal magnetic field configuration can vary between a dipole-like configuration and a configuration with strong collimated polar lines and closed streamers at the equator (multicomponent configuration for the magnetic field). We show that elongated magnetic features will only be present if the plasma-beta parameter at the coronal base is beta(0) << 1. Using our self-consistent three-dimensional magnetohydrodynamics model, we estimate for these stellar winds the timescale of planet migration due to drag forces exerted by the stellar wind on a hot-Jupiter. In contrast to the findings of Lovelace et al., who estimated such timescales using the Weber and Davis model, our model suggests that the stellar wind of these multicomponent coronae are not expected to have significant influence on hot-Jupiters migration. Further simulations are necessary to investigate this result under more intense surface magnetic field strengths (similar to 2-3 kG) and higher coronal base densities, as well as in a tilted stellar magnetosphere.
Resumo:
Here we investigate the contribution of surface Alfven wave damping to the heating of the solar wind in minima conditions. These waves are present in the regions of strong inhomogeneities in density or magnetic field (e.g., the border between open and closed magnetic field lines). Using a three-dimensional (3D) magnetohydrodynamics (MHD) model, we calculate the surface Alfven wave damping contribution between 1 and 4 R(circle dot) (solar radii), the region of interest for both acceleration and coronal heating. We consider waves with frequencies lower than those that are damped in the chromosphere and on the order of those dominating the heliosphere: 3 x 10(-6) to 10(-1) Hz. In the region between open and closed field lines, within a few R(circle dot) of the surface, no other major source of damping has been suggested for the low frequency waves we consider here. This work is the first to study surface Alfven waves in a 3D environment without assuming a priori a geometry of field lines or magnetic and density profiles. We demonstrate that projection effects from the plane of the sky to 3D are significant in the calculation of field line expansion. We determine that waves with frequencies >2.8 x 10(-4) Hz are damped between 1 and 4 R(circle dot). In quiet-Sun regions, surface Alfven waves are damped at further distances compared to active regions, thus carrying additional wave energy into the corona. We compare the surface Alfven wave contribution to the heating by a variable polytropic index and find it as an order of magnitude larger than needed for quiet-Sun regions. For active regions, the contribution to the heating is 20%. As it has been argued that a variable gamma acts as turbulence, our results indicate that surface Alfven wave damping is comparable to turbulence in the lower corona. This damping mechanism should be included self-consistently as an energy driver for the wind in global MHD models.
Resumo:
This study investigates how the summer thunderstorms developed over the city of Sao Paulo and if the pollution might affect its development or characteristics during the austral summer (December-January-February-March, DJFM months). A total of 605 days from December 1999 to March 2004 was separated as 241 thunderstorms days (TDs) and 364 non-thunderstorm days (NTDs). The analyses are performed by using hourly measurements of air temperature (T), web-bulb temperature (Tw), surface atmospheric pressure (P), wind velocity and direction, rainfall and thunder and lightning observations collected at the Meteorological Station of the University of Sao Paulo in conjunction with aerosol measurements obtained by AERONET (Aerosol Robotic Network), and the NCEP-DOE (National Centers for Environmental Prediction Department of Energy) reanalysis and radiosondes. The wind diurnal cycle shows that for TDs the morning flow is from the northwest rotating to the southeast after 16: 00 local time (LT) and it remains from the east until the night. For the NTDs, the wind is well characterized by the sea-breeze circulation that in the morning has the wind blowing from the northeast and in the afternoon from the southeast. The TDs show that the air temperature diurnal cycle presents higher amplitude and the maximum temperature of the day is 3.2 degrees C higher than in NTDs. Another important factor found is the difference between moisture that is higher during TDs. In terms of precipitation, the TDs represent 40% of total of days analyzed and those days are responsible for more than 60% of the total rain accumulation during the summer, for instance 50% of the TDs had more than 15.5mm day(-1) while the NTDs had 4 mm day(-1). Moreover, the rainfall distribution shows that TDs have higher rainfall rate intensities and an afternoon precipitation maximum; while in the NTDs there isn`t a defined precipitation diurnal cycle. The wind and temperature fields from NCEP reanalysis concur with the local weather station and radiosonde observations. The NCEP composites show that TDs are controlled by synoptic circulation characterized by a pre-frontal situation, with a baroclinic zone situated at southern part of Sao Paulo. In terms of pollution, this study employed the AERONET data to obtain the main aerosol characteristics in the atmospheric column for both TDs and NTDs. The particle size distribution and particle volume size distribution have similar concentrations for both TDs and NTDs and present a similar fine and coarse mode mean radius. In respect to the atmospheric loading, the aerosol optical depth (AOD) at different frequencies presented closed mean values for both TDs and NTDs that were statistically significant at 95% level. The spectral dependency of those values in conjunction with the Angstrom parameter reveal the higher concentration of the fine mode particles that are more likely to be hygroscopic and from urban areas. In summary, no significant aerosol effect could be found on the development of summer thunderstorms, suggesting the strong synoptic control by the baroclinic forcing for deep convective development. (C) 2010 Published by Elsevier B. V.
Resumo:
This paper presents a new technique and two algorithms to bulk-load data into multi-way dynamic metric access methods, based on the covering radius of representative elements employed to organize data in hierarchical data structures. The proposed algorithms are sample-based, and they always build a valid and height-balanced tree. We compare the proposed algorithm with existing ones, showing the behavior to bulk-load data into the Slim-tree metric access method. After having identified the worst case of our first algorithm, we describe adequate counteractions in an elegant way creating the second algorithm. Experiments performed to evaluate their performance show that our bulk-loading methods build trees faster than the sequential insertion method regarding construction time, and that it also significantly improves search performance. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study the loading of sodium atoms into a magneto-optical trap from current-controlled sodium metal dispensers. Contrary to what was previously reported [V. Wippel, C. Binder, W. Huber, L Windholz, M. Allegrini, F. Fuso, E. Arimondo, Eur. Phys. J. D 17 (2001) 2851 we demonstrate a significantly higher number of trapped atoms that make Na dispensers a feasible source of atoms for cold-atom studies. The inherent rise in pressure that naturally arises from metal dispensers as they are heated to release atoms is partially controlled by placing the metal dispensers near the pumping port where an ion pump is connected. We also study the effects of placing the sodium dispensers at different distances from the main vacuum chamber where the atoms are trapped and the effectiveness of using a Zeeman slower to cool the atoms as they emerge from the dispensers. We observe trapping of up to 1.9 x 10(8) atoms, which is significantly higher by almost three orders of magnitude than previously reported experiments. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
PV-Wind-Hybrid systems for stand-alone applications have the potential to be more cost efficient compared to PV-alone systems. The two energy sources can, to some extent, compensate each others minima. The combination of solar and wind should be especially favorable for locations at high latitudes such as Sweden with a very uneven distribution of solar radiation during the year. In this article PV-Wind-Hybrid systems have been studied for 11 locations in Sweden. These systems supply the household electricity for single family houses. The aim was to evaluate the system costs, the cost of energy generated by the PV-Wind-Hybrid systems, the effect of the load size and to what extent the combination of these two energy sources can reduce the costs compared to a PV-alone system. The study has been performed with the simulation tool HOMER developed by the National Renewable Energy Laboratory (NREL) for techno-economical feasibility studies of hybrid systems. The results from HOMER show that the net present costs (NPC) for a hybrid system designed for an annual load of 6000 kWh with a capacity shortage of 10% will vary between $48,000 and $87,000. Sizing the system for a load of 1800 kWh/year will give a NPC of $17,000 for the best and $33,000 for the worst location. PV-Wind-Hybrid systems are for all locations more cost effective compared to PV-alone systems. Using a Hybrid system is reducing the NPC for Borlänge by 36% and for Lund by 64%. The cost per kWh electricity varies between $1.4 for the worst location and $0.9 for the best location if a PV-Wind-Hybrid system is used.
Resumo:
A one year data analysis for a micro PV-Wind hybrid system (0.52 kW + 1 kW), installed in Borlänge/Sweden is presented in this paper. The system performance was evaluated according the guidelines of the IEC 61724 standard. The parameters obtained allow a comparison with similar systems. The measurement data are also used to evaluate the sizing and operation of the hybrid system. In addition, the system was modelled in HOMER to study sizing options.
Resumo:
Over the last decade, we have seen a massive increase in the construction of wind farms in northern Fennoscandia. Wind farms comprising hundreds of wind turbines are being built, with little knowledge of the possible cumulative adverse effects on the habitat use and migration of semi-domesticated free-ranging reindeer. We assessed how reindeer responded to wind farm construction in an already fragmented landscape, with specific reference to the effects on use of movement corridors and reindeer habitat selection. We used GPS-data from reindeer during calving and post-calving in the MalAyen reindeer herding community in Sweden. We analysed data from the pre-development years compared to the construction years of two relatively small wind farms. During construction of the wind farms, use of original migration routes and movement corridors within 2 km of development declined by 76 %. This decline in use corresponded to an increase in activity of the reindeer measured by increased step lengths within 0-5 km. The step length was highest nearest the development and declining with distance, as animals moved towards migration corridors and turned around or were observed in holding patterns while not crossing. During construction, reindeer avoided the wind farms at both regional and landscape scale of selection. The combined construction activities associated with even a few wind turbines combined with power lines and roads in or close to central movement corridors caused a reduction in the use of such corridors and grazing habitat and increased the fragmentation of the reindeer calving ranges.
Resumo:
Maine has the highest potential for wind energy in New England and falls within the top twenty states in the nation. It falls just behind Wisconsin and California with an estimate electrical output of 56 billion kWhs. The geological makeup of Maine’s mountains in the western part of the state, and the exposed coastline provide opportune areas to capture wind and convert it into energy. The information included in this poster will suggest the most likely areas for wind development based on a number of factors as recommended by the American Wind Energy Association.
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2006/1000/thumbnail.jpg
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2008/1018/thumbnail.jpg
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2005/1015/thumbnail.jpg
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2005/1022/thumbnail.jpg