828 resultados para Customer Involvement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca2+) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca2+ channels and sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca2+ channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca2+ channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca2+ was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca2+ channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca2+ channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca2+ protein levels. J. Cell. Physiol. 226: 2934-2942, 2011. (C) 2011 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the ability of hexanic ethanolic fraction of Rubus brasiliensis Martius (Roseceae), to induce anxiolytic effect and also the possible involvement of the GABA(A)-benzodiazepine receptor complex, male Wistar rats and Swiss mice behaviour were tested in the elevated plus maze (EPM). All the doses of the extract, 50, 100 and 150 mg/kg, administered per gavage (vo), 30 min before the behavioural evaluation, induced an anxiolytic effect expressed by: increased number of entries in and time spent in the open arms and percentage of open arm entries: and decreased number of entries and time spent in the closed arms. The treatment of mice with flumazenil (Ro 15-1788), 0.5, 1.0 and 1.5 mg/kg, i.p., 15-min before the administration of hexanic fraction, 100 mg/kg, vo, blocked the hexanic fraction-induced anxiolytic effect. The LD50 for the hexanic fraction was 1512 mg/kg. In conclusion, it was shown that the hexanic fraction of R. brasiliensis induced an anxiolytic effect in rats and mice. This effect can be attributed to a liposoluble principle with low toxicity which may be acting as an agonist on GABA(A)-benzodiazepine receptor complex. (C) 1998 Elsevier B.V. Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the participation of central alpha(2)-adrenoceptors and imidazoline receptors in the inhibition of water deprivation-induced water intake in rats. The alpha(2)-adrenoceptor and imidazoline antagonist idazoxan (320 nmol), but not the alpha(2)-adrenoceptor antagonist yohimbine, abolished the antidipsogenic effect of moxonidine (alpha(2)-adrenoceptor and imidazoline agonist, 20 nmol) microinjected into the medial septal area. Yohimbine abolished the antidipsogenic effect of moxonidine intracerebroventricularly. Therefore, central moxonidine may inhibit water intake acting independently on both imidazoline receptors and alpha(2)-adrenoceptors at different forebrain sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral chemoreflex activation with potassium cyanide (KCN) in awake rats or in the working heart-brainstem preparation (WHBP) produces: (a) a sympathoexcitatory/pressor response; (b) bradycardia; and (c) an increase in the frequency of breathing. Our main aim was to evaluate neurotransmitters involved in mediating the sympathoexcitatory component of the chemoreflex within the nucleus tractus solitarii (NTS). In previous studies in conscious rats, the reflex bradycardia, but not the pressor response, was reduced by antagonism of either ionotropic glutamate or purinergic P2 receptors within the NTS. In the present study we evaluated a possible dual role of both P2 and NMDA receptors in the NTS for processing the sympathoexcitatory component (pressor response) of the chemoreflex in awake rats as well as in the WHBP. Simultaneous blockade of ionotropic glutamate receptors and P2 receptors by sequential microinjections of kynurenic acid (KYN, 2 nmol (50 nl)(-1)) and pyridoxalphosphate-6-azophenyl-2',4'-disulphonate (PPADS, 0.25 nmol (50 nl)(-1)) into the commissural NTS in awake rats produced a significant reduction in both the pressor (+38 +/- 3 versus +8 +/- 3 mmHg) and bradycardic responses (-172 +/- 18 versus -16 +/- 13 beats min(-1); n = 13), but no significant changes in the tachypnoea measured using plethysmography (270 +/- 30 versus 240 +/- 21 cycles min(-1), n = 7) following chemoreflex activation in awake rats. Control microinjections of saline produced no significant changes in these reflex responses. In WHBP, microinjection of KYN (2 nmol (20 nl)(-1)) and PPADS (1.6 nmol (20 nl)(-1)) into the commissural NTS attenuated significantly both the increase in thoracic sympathetic activity (+52 +/- 2% versus +17 +/- 1%) and the bradycardic response (-151 +/- 17 versus -21 +/- 3 beats min(-1)) but produced no significant changes in the increase of the frequency of phrenic nerve discharge (+0.24 +/- 0.02+0.20 +/- 0.02 Hz). The data indicate that combined microinjections of PPADS and KYN into the commissural NTS in both awake rats and the WHBP are required to produce a significant reduction in the sympathoexcitatory response (pressor response) to peripheral chemoreflex activation. We conclude that glutamatergic and purinergic mechanisms are part of the complex neurotransmission system of the sympathoexcitatory component of the chemoreflex at the level of the commissural NTS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study we compared the effects produced by moxonidine (alpha(2)-adrenoceptor/imidazoline agonist) injected into the 4th cerebral ventricle and into the lateral cerebral ventricle on mean arterial pressure, heart rate and on renal, mesenteric and hindquarter vascular resistances, as well as the possible action of moxonidine on central alpha(1)- or alpha(2)-adrenoceptors to produce cardiovascular responses. Male Holtzman rats (n = 7-8) anesthetized with urethane (0.5 g/kg, intravenously - i.v.) and alpha-chloralose (60 mg/kg, i.v.) were used. Moxonidine (5, 10 and 20 nmol) injected into the 4th ventricle reduced arterial pressure (-19 +/- 5, -30 +/- 7 and -43 +/- 8 mmHg vs. vehicle: 2 +/- 4 mmHg), heart rate (-10 +/- 6, - 16 +/- 7 and -27 +/- 9 beats per minute - bpm, vs. vehicle: 4 +/- 5 bpm), and renal, mesenteric and hindquarter vascular resistances. Moxonidine (5, 10 and 20 nmol) into the lateral ventricle only reduced renal vascular resistance (-77 +/- 17%, - 85 +/- 13%, -89 +/- 10% vs. vehicle: 3 +/- 4%), without changes on arterial pressure, heart rate and mesenteric and hindquarter vascular resistances. Pre-treatment with the selective alpha(2)-adrenoceptor antagonist yohimbine (80, 160 and 320 nmol) injected into the 4th ventricle attenuated the hypotension (-32 +/- 5, -25 +/- 4 and -12 +/- 6 mmHg), bradycardia (-26 +/- 11, -23 +/- 5 and -11 +/- 6 bpm) and the reduction in renal, mesenteric and hindquarter vascular resistances produced by moxonidine (20 nmol) into the 4th ventricle. Pretreatment with yohimbine (320 nmol) into the lateral ventricle did not change the renal vasodilation produced by moxonidine (20 nmol) into the lateral ventricle. The alpha(1)-adrenoceptor antagonist prazosin (320 nmol) injected into the 4th ventricle did not affect the cardiovascular effects of moxonidine. However, prazosin (80, 160 and 320 nmol) into the lateral ventricle abolished the renal vasodilation (-17 +/- 4, -6 +/- 9 and 2 +/- 11%) produced by moxonidine. The results indicate that the decrease in renal vascular resistance due to moxonidine action in the forebrain is mediated by alpha(1)-adrenoceptors, while the cardiovascular effects produced by moxonidine acting in the brainstern depend at least partially on the activation of coadrenoceptors. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A space between neoplastic acini and prostatic stroma is not rare and studies have interpreted this as an artifact, considering the absence of endothelial cells indicating vascular invasion. Thus, the aims of this work were to characterize and correlate the occurrence and extent of retraction clefting with the reactivities of alpha and beta dystroglycan (alpha DG, beta DG), laminin, matrix metalloproteinase 2 (MMP-2), p63, insulin-like growth factor 1(IGF-1), vimentin, and fibroblast growth factor 2 (FGF-2). The study was based on nonneoplastic and neoplastic prostatic tissues obtained from necropsies and retropubic radical prostatectomies. The results showed that periacinar retraction clefting was significantly more frequent in prostatic carcinoma samples than in normal prostatic acini. Most of the neoplastic acini (72.0%) showed retraction clefting of more than 50% of circumference, which were significantly more frequent in Gleason score 7 and 6. Decreased collagen and reticular and elastic fibers were verified in the stroma around neoplastic acini. Weak and discontinuous alpha DG, beta DG, and laminin immunoreactivities and intensified MMP-2, vimentin, IGF-1 and FGF-2 immunoreactivities were verified in the neoplastic acini; p63 immunoreactivity was negative in all carcinomas. Thus, these findings showed that the lack of epithelial basal cells, DGs, and laminin and increased MMP-2, IGF-1, and FGF-7 could be considered important pathways in periacinar retraction occurrence. This study demonstrated the origin of and the biological mechanisms responsible for periacinar retraction clefting in prostatic carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress induced a decrease in the reactivity of the aorta to noradrenaline (NA), as a consequence of an endothelial nitric oxide (NO) system hyperactivity. The main characteristic of the stress response is activation of the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic adrenomedullary (SA) system. The participation of the HPA axis and SA system in the decreased reactivity to NA in the aorta of rats exposed to 4-h immobilization was investigated. Concentration-response relationships for NA were obtained in the aorta, with and without endothelium, isolated from normal and stressed rats, following these procedures: (1) in the absence and presence of L-NAME; (2) after adrenalectomy (ADX) or not, in the absence or presence of L-NAME; (3) ADX rats treated or not with corticosterone; (4) ADX associated with stress; and (5) treated or not with reserpine. The reactivity of aorta without endothelium was unaffected by the procedures. The reactivity of aorta with endothelium was decreased by either stress or ADX. This effect was reversed by both L-NAME and corticosterone. ADX did not potentiate the decrease in the aorta reactivity induced by stress. Reserpine did not change the reactivity of aorta with endothelium from normal rats, but prevented the decrease in reactivity induced by stress. It is concluded that the HPA axis participates in endothelium-dependent modulation of aorta reactivity in normal conditions and that thr SA system participates in hyperactivity of the endothelial NO-system induced by stress, which is responsible for the decreased aorta reactivity to NA. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim of the study: Cissus sicyoides L. is a medicinal plant popularly known in Brazil against various diseases and the research interest in this plant is justifiable because of its potential medicinal value in stomachache and gastric ulcer.Materials and methods: The methanolic extract obtained from the leaves of Cissus sicyoides (Cc) was evaluated for the ability to protect the gastric mucosa against injuries caused by necrotizing agents (0.3 M HCl/60% EtOH, absolute ethanol, piroxicam and pylorus ligature) in rodents. We also evaluated microcirculation, antioxidant action and participation of NO (nitric oxide) and sulfhydryls (SH) groups in the Cc gastroprotective action.Results: Administration of Cc significantly reduced gastric lesions induced by different ulcerogenic agents in rodents. This extract administered by oral route significantly increased gastric volume without exerting antisecretory effect. The Cc effect involved an increase of the defense mechanism of the gastrointestinal mucosa such as NO and SH groups that prevent and attenuate the ulcer process. The Cc also has antioxidant property against oxidative stress but does not modify microcirculation response in gastric mucosa.Conclusions: These results confirmed the traditional use of Cissus sicyoides for the treatment of gastric ulcer. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)