909 resultados para Credit channel
Resumo:
This paper presents a study that identifies a stakeholder-defined concept of Corporate Responsibility (CR) in the context of a UK financial service organisation in the immediate pre-credit crunch era. From qualitative analysis of interviews and focus groups with employees and customers, we identify, in a wide-ranging stakeholder-defined concept of CR, six themes that together imply two necessary conditions for a firm to be regarded as responsible— both corporate actions and character must be consonant with CR. This provides both empirical support for a notable, recent theoretical contribution by Godfrey (in Acad Manag Rev 30:777–798, 2005) and novel lessons for reputation management practice.
Resumo:
Abstract: Modulation of presynaptic voltage-dependent Ca+ channels is a major means of controlling neurotransmitter release. The CaV 2.2 Ca2+ channel subunit contains several inhibitory interaction sites for Gβγ subunits, including the amino terminal (NT) and I–II loop. The NT and I–II loop have also been proposed to undergo a G protein-gated inhibitory interaction, whilst the NT itself has also been proposed to suppress CaV 2 channel activity. Here, we investigate the effects of an amino terminal (CaV 2.2[45–55]) ‘NT peptide’ and a I–II loop alpha interaction domain (CaV 2.2[377–393]) ‘AID peptide’ on synaptic transmission, Ca2+ channel activity and G protein modulation in superior cervical ganglion neurones (SCGNs). Presynaptic injection of NT or AID peptide into SCGN synapses inhibited synaptic transmission and also attenuated noradrenaline-induced G protein modulation. In isolated SCGNs, NT and AID peptides reduced whole-cell Ca2+ current amplitude, modified voltage dependence of Ca2+ channel activation and attenuated noradrenaline-induced G protein modulation. Co-application of NT and AID peptide negated inhibitory actions. Together, these data favour direct peptide interaction with presynaptic Ca2+ channels, with effects on current amplitude and gating representing likely mechanisms responsible for inhibition of synaptic transmission. Mutations to residues reported as determinants of Ca2+ channel function within the NT peptide negated inhibitory effects on synaptic transmission, Ca2+ current amplitude and gating and G protein modulation. A mutation within the proposed QXXER motif for G protein modulation did not abolish inhibitory effects of the AID peptide. This study suggests that the CaV 2.2 amino terminal and I–II loop contribute molecular determinants for Ca2+ channel function; the data favour a direct interaction of peptides with Ca2+ channels to inhibit synaptic transmission and attenuate G protein modulation. Non-technical summary: Nerve cells (neurones) in the body communicate with each other by releasing chemicals (neurotransmitters) which act on proteins called receptors. An important group of receptors (called G protein coupled receptors, GPCRs) regulate the release of neurotransmitters by an action on the ion channels that let calcium into the cell. Here, we show for the first time that small peptides based on specific regions of calcium ion channels involved in GPCR signalling can themselves inhibit nerve cell communication. We show that these peptides act directly on calcium channels to make them more difficult to open and thus reduce calcium influx into native neurones. These peptides also reduce GPCR-mediated signalling. This work is important in increasing our knowledge about modulation of the calcium ion channel protein; such knowledge may help in the development of drugs to prevent signalling in pathways such as those involved in pain perception.
Resumo:
By employing Moody’s corporate default and rating transition data spanning the last 90 years we explore how much capital banks should hold against their corporate loan portfolios to withstand historical stress scenarios. Specifically, we will focus on the worst case scenario over the observation period, the Great Depression. We find that migration risk and the length of the investment horizon are critical factors when determining bank capital needs in a crisis. We show that capital may need to rise more than three times when the horizon is increased from 1 year, as required by current and future regulation, to 3 years. Increases are still important but of a lower magnitude when migration risk is introduced in the analysis. Further, we find that the new bank capital requirements under the so-called Basel 3 agreement would enable banks to absorb Great Depression-style losses. But, such losses would dent regulatory capital considerably and far beyond the capital buffers that have been proposed to ensure that banks survive crisis periods without government support.