1000 resultados para Craniometric measurements
Resumo:
Considerable attention has been focused on the properties of graphs derived from Internet measurements. Router-level topologies collected via traceroute studies have led some authors to conclude that the router graph of the Internet is a scale-free graph, or more generally a power-law random graph. In such a graph, the degree distribution of nodes follows a distribution with a power-law tail. In this paper we argue that the evidence to date for this conclusion is at best insufficient. We show that graphs appearing to have power-law degree distributions can arise surprisingly easily, when sampling graphs whose true degree distribution is not at all like a power-law. For example, given a classical Erdös-Rényi sparse, random graph, the subgraph formed by a collection of shortest paths from a small set of random sources to a larger set of random destinations can easily appear to show a degree distribution remarkably like a power-law. We explore the reasons for how this effect arises, and show that in such a setting, edges are sampled in a highly biased manner. This insight allows us to distinguish measurements taken from the Erdös-Rényi graphs from those taken from power-law random graphs. When we apply this distinction to a number of well-known datasets, we find that the evidence for sampling bias in these datasets is strong.
Resumo:
The purpose of this study is to explore aspects of social organisation during the Upper Palaeolithic and Mesolithic periods using craniometric data. Different hypotheses were tested using geometric morphometrics, alongside traditional craniometric data. The clustering of individuals from the same site, as well as a correspondence to an isolation-by-distance model—particular in the Mesolithic samples—points to population structure within these groups. Moreover, discontinuities in cranial traits between the early Upper Palaeolithic and later periods could suggest that the Last Glacial Maximum had a disruptive effect on populations in Europe. Differences in social organisation can often result from cultural norms regarding post-marital residence. Such differences can be tested by comparing cranial data to that of geographic information. Greater variation in male cranial traits relative to females, after controlling for location, suggests that the overall pattern of residence during the Upper Palaeolithic and Mesolithic was one of matrilocality. It has been suggested that coastal occupation was density dependent and these populations show a greater degree of sedentism than their inland counterparts. Moreover, it has been proposed that coastal areas were not continuously occupied until the Late Pleistocene due to spatial restrictions that would adversely affect reproductive opportunities. This study corroborates the pattern seen in cranial traits corresponded with that of a more sedentary population. The results are consistent with the hypothesis that coastal populations are more sedentary than inland populations during these periods. This study adds new information regarding the social dynamics of prehistoric populations in Europe and sheds light on some of the conditions that may have paved the way for the transition to agriculture
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
We have recently developed a spectral re-shaping technique to simultaneously measure nonlinear refractive index and nonlinear absorption. In this technique, the information about the nonlinearities is encoded in the frequency domain, rather than in the spatial domain as in the conventional Z-scan method. Here we show that frequency encoding is much more robust with respect to scattering. We compare spectral re-shaping and Z-scan measurements in a highly scattering environment and show that reliable spectral re-shaping measurements can be performed even in a regime that precludes standard Z-scans.
Resumo:
The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxics assessments in Environmental Justice applications, epidemiological studies, and environmental health risk assessments. In this study, we developed and applied a method to characterize air toxics concentrations in urban areas using results of the recently conducted field study in Wilmington, DE. Mobile measurements were collected over a 4- x 4-km area of downtown Wilmington for three components: formaldehyde (representative of volatile organic compounds and also photochemically reactive pollutants), aerosol size distribution (representing fine particulate matter), and water-soluble hexavalent chromium (representative of toxic metals). These measurements were,used to construct spatial and temporal distributions of air toxics in the area that show a very strong temporal variability, both diurnally and seasonally. An analysis of spatial variability indicates that all pollutants varied significantly by location, which suggests potential impact of local sources. From the comparison with measurements at the central monitoring site, we conclude that formaldehyde and fine particulates show a positive correlation with temperature, which could also be the reason that photochemically generated formaldehyde and fine particulates over the study area correlate well with the fine particulate matter measured at the central site.
Resumo:
Background. Thoracic epidural catheters provide the best quality postoperative pain relief for major abdominal and thoracic surgical procedures, but placement is one of the most challenging procedures in the repertoire of an anesthesiologist. Most patients presenting for a procedure that would benefit from a thoracic epidural catheter have already had high resolution imaging that may be useful to assist placement of a catheter. Methods. This retrospective study used data from 168 patients to examine the association and predictive power of epidural-skin distance (ESD) on computed tomography (CT) to determine loss of resistance depth acquired during epidural placement. Additionally, the ability of anesthesiologists to measure this distance was compared to a radiologist, who specializes in spine imaging. Results. There was a strong association between CT measurement and loss of resistance depth (P < 0.0001); the presence of morbid obesity (BMI > 35) changed this relationship (P = 0.007). The ability of anesthesiologists to make CT measurements was similar to a gold standard radiologist (all individual ICCs > 0.9). Conclusions. Overall, this study supports the examination of a recent CT scan to aid in the placement of a thoracic epidural catheter. Making use of these scans may lead to faster epidural placements, fewer accidental dural punctures, and better epidural blockade.
Resumo:
The pKa values of ionizable groups in proteins report the free energy of site-specific proton binding and provide a direct means of studying pH-dependent stability. We measured histidine pKa values (H3, H22, and H105) in the unfolded (U), intermediate (I), and sulfate-bound folded (F) states of RNase P protein, using an efficient and accurate nuclear magnetic resonance-monitored titration approach that utilizes internal reference compounds and a parametric fitting method. The three histidines in the sulfate-bound folded protein have pKa values depressed by 0.21 ± 0.01, 0.49 ± 0.01, and 1.00 ± 0.01 units, respectively, relative to that of the model compound N-acetyl-l-histidine methylamide. In the unliganded and unfolded protein, the pKa values are depressed relative to that of the model compound by 0.73 ± 0.02, 0.45 ± 0.02, and 0.68 ± 0.02 units, respectively. Above pH 5.5, H22 displays a separate resonance, which we have assigned to I, whose apparent pKa value is depressed by 1.03 ± 0.25 units, which is ∼0.5 units more than in either U or F. The depressed pKa values we observe are consistent with repulsive interactions between protonated histidine side chains and the net positive charge of the protein. However, the pKa differences between F and U are small for all three histidines, and they have little ionic strength dependence in F. Taken together, these observations suggest that unfavorable electrostatics alone do not account for the fact that RNase P protein is intrinsically unfolded in the absence of ligand. Multiple factors encoded in the P protein sequence account for its IUP property, which may play an important role in its function.
Resumo:
Based on thermodynamic principles, we derive expressions quantifying the non-harmonic vibrational behavior of materials, which are rigorous yet easily evaluated from experimentally available data for the thermal expansion coefficient and the phonon density of states. These experimentally- derived quantities are valuable to benchmark first-principles theoretical predictions of harmonic and non-harmonic thermal behaviors using perturbation theory, ab initio molecular-dynamics, or Monte-Carlo simulations. We illustrate this analysis by computing the harmonic, dilational, and anharmonic contributions to the entropy, internal energy, and free energy of elemental aluminum and the ordered compound FeSi over a wide range of temperature. Results agree well with previous data in the literature and provide an efficient approach to estimate anharmonic effects in materials.
Resumo:
We present experimental and theoretical investigations of the highly nonlinear and broadband noise that exists on supercontinuum spectra generated from launching femtosecond Ti:Sapphire pulses into microstructure fiber.
Resumo:
Supercontinua generated in microstructure fiber can exhibit significant excess amplitude noise. We present experimental and numerical studies of the origins of this excess noise and its dependence on the input laser pulse parameters.
Resumo:
Space-borne thermal infrared instruments working in the nadir geometry are providing spectroscopic measurements of species that impact on the chemical composition of the atmosphere and on the climate forcing: H2O, CO2, N2O, CH4, CFCs, O3, and CO. The atmospheric abundances obtained from the analysis of IMG/ADEOS measurements are discussed in order to demonstrate the potential scientific return to be expected from future missions using advanced infrared nadir sounders. Some strengths and limitations of passive infrared remote sensing from space are illustrated. © 2003 European Geosciences Union.
Resumo:
Most of the air quality modelling work has been so far oriented towards deterministic simulations of ambient pollutant concentrations. This traditional approach, which is based on the use of one selected model and one data set of discrete input values, does not reflect the uncertainties due to errors in model formulation and input data. Given the complexities of urban environments and the inherent limitations of mathematical modelling, it is unlikely that a single model based on routinely available meteorological and emission data will give satisfactory short-term predictions. In this study, different methods involving the use of more than one dispersion model, in association with different emission simulation methodologies and meteorological data sets, were explored for predicting best CO and benzene estimates, and related confidence bounds. The different approaches were tested using experimental data obtained during intensive monitoring campaigns in busy street canyons in Paris, France. Three relative simple dispersion models (STREET, OSPM and AEOLIUS) that are likely to be used for regulatory purposes were selected for this application. A sensitivity analysis was conducted in order to identify internal model parameters that might significantly affect results. Finally, a probabilistic methodology for assessing urban air quality was proposed.
Resumo:
An Electronic Nose is being jointly developed between the University of Greenwich and the Institute of Intelligent Machines to detect the gases given off from an oil filled transformer when it begins to break down. The gas sensors being used are very simple, consisting of a layer of Tin Oxide (SnO2) which is heated to approximately 640 K and the conductivity varies with the gas concentrations. Some of the shortcomings introduced by the commercial gas sensors available are being overcome by the use of an integrated array of gas sensors and the use of artificial neural networks which can be 'taught' to recognize when the gas contains several components. At present simulated results have achieved up to a 94% success rate of recognizing two component gases and future work will investigate alternative neural network configurations to maintain this success rate with practical measurements.
Resumo:
Annular, ring or torsional shear testers are commonly used in bulk solids handling research for the purpose of powder characterisation or equipment design. This paper reports from a DEFRA sponsored project which aims to develop an industrial powder flow-ability tester, (based on the annular shear tester) that is economic to buy and quick and easy to use in trained but unskilled hands. This paper compares the wall failure loci measured with an annular shear cell with measurements obtained using the accepted standard wall friction tester, the Jenike shear cell. These wall failure loci have been measured for several bulk solids which range from fine cohesive powders to free-flowing granular materials, on a stainless steel 304 2B wall surface.
Resumo:
Gas-solids two phase systems are widely employed within process plant in the form of pneumatic conveyors, dust extraction systems and solid fuel injection systems. The measurement of solids phase velocity therefore has wide potential application in flow monitoring and, in conjunction with density measurement instrumentation, solids mass flow rate measurement. Historically, a number of authors have detailed possible measurement techniques, and some have published limited test results. It is, however, apparent that none of these technologies have found wide application in industry. Solids phase velocity measurements were undertaken using real time cross correlation of signals from two electrostatic sensors spaced axially along a pipeline conveying pulverised coal (PF). Details of the measurement equipment, the pilot scale test rig and the test results are presented.