952 resultados para Coulomb explosions
Resumo:
We consider independent edge percolation models on Z, with edge occupation probabilities. We prove that oriented percolation occurs when beta > 1 provided p is chosen sufficiently close to 1, answering a question posed in Newman and Schulman (Commun. Math. Phys. 104: 547, 1986). The proof is based on multi-scale analysis.
Resumo:
We present the first measurement of photoproduction of J/psi and of two-photon production of high-mass e(+)e(-) pairs in electromagnetic (or ultra-peripheral) nucleus-nucleus interactions, using Au + Au data at root s(NN) = 200 GeV. The events are tagged with forward neutrons emitted following Coulomb excitation of one or both Au* nuclei. The event sample consists of 28 events with m(e+e-) > 2 GeV/c(2) with zero like-sign background. The measured cross sections at midrapidity of d sigma/dy (J/psi + Xn, y = 0) = 76 +/- 33 (stat) +/- 11 (syst) pb and d(2)sigma /dm dy (e(+) e(-) + Xn, y = 0) = 86 +/- 23(stat) +/- 16(syst) mu b/ (GeV/c(2)) for m(e+e-) epsilon vertical bar 2.0, 2.8 vertical bar GeV/c(2) have been compared and found to be consistent with models for photoproduction of J/psi and QED based calculations of two-photon production of e(+)e(-) pairs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The angular distributions for elastic scattering and breakup of halo nuclei are analysed using a near-side/far-side decomposition within the framework of the dynamical eikonal approximation. This analysis is performed for (11)Be impinging on Pb at 69 MeV/nucleon. These distributions exhibit very similar features. In particular they are both near-side dominated, as expected from Coulomb-dominated reactions. The general shape of these distributions is sensitive mostly to the projectile-target interactions, but is also affected by the extension of the halo. This suggests the elastic scattering not to be affected by a loss of flux towards the breakup channel. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We study the effects of final state interactions in two-proton emission by nuclei. Our approach is based on the solution the time-dependent Schrodinger equation. We show that the final relative energy between the protons is substantially influenced by the final state interactions. We also show that alternative correlation functions can be constructed showing large sensitivity to the spin of the diproton system. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The tunneling of composite systems, where breakup may occur during the barrier penetration process, is considered in connection with the fusion of halo-like radioactive, neutron- and proton-rich nuclei, on heavy targets. The large amount of recent and new data clearly indicates that breakup hinders the fusion at energies near and below the Coulomb barrier. However, clear evidence for enhancement due to halo properties seems to over ride the breakup hindrance at lower energies, owing, to a large extent, to the extended matter density distribution. In particular we report here that at sub-barrier energies the fusion cross section of the Borromean two-neutron halo nucleus (6)He with the actinide nucleus (238)U is significantly enhanced as compared to the fusion of a similar projectile with no halo. This conclusion differs from that of the original work, where it was claimed that no such enhancement ensues. This sub-barrier fusion enhancement is also observed in the (6)He + (209)Bi system. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We discuss consistency of the concept of external background in QFT. Different restrictions on magnitude of magnetic and electric fields are analyzed. The back reaction due to strong electric field is calculated and restrictions on the magnitude and duration of such a field are obtained. The problem of consistency of Dirac equation with a superstrong Coulomb field is discussed.
Resumo:
Difficulties in cross-section measurements at very low energies, when charged particles are involved, led to the development of some indirect methods. The Trojan horse method (THM) allows us to bypass the Coulomb effects and has been successfully applied to several reactions of astrophysical interest. A brief review of the THM applications is reported together with some of the most recent results.
Resumo:
Using the Sao Paulo potential and the barrier penetration formalism we have calculated the astrophysical factor S(E) for 946 fusion reactions involving stable and neutron-rich isotopes of C, O, Ne, and Mg for center-of-mass energies E varying from 2 to approximate to 18-30 MeV (covering the range below and above the Coulomb barrier). We have parameterized the energy dependence, S(E), by an accurate universal 9-parameter analytic expression and present tables of fit parameters for all the reactions. We also discuss the reduced 3-parameter version of our fit which is highly accurate at energies below the Coulomb barrier, and outline the procedure for calculating the reaction rates. The results can be easily converted to thermonuclear or pycnonuclear reaction rates to simulate various nuclear burning phenomena, in particular, stellar burning at high temperatures and nucleosynthesis in high density environments. (C) 2010 Elsevier Inc. All rights reserved
Resumo:
A study of the kinematics of the alpha-d coincidences in the (6)Li + (59)Co system at a bombarding energy of E(lab) = 29.6MeV is presented. With exclusive measurements performed over different angular intervals it is possible to identify the respective contributions of the sequential and direct projectile breakup components. The angular distributions of both breakup components are fairly well described by the Continuum-Discretized Coupled-Channels framework (CDCC). Furthermore, a careful analysis of these processes using a semiclassical approach provides information on both their lifetime and their distance of occurrence with respect to the target. Breakup to the low-lying (near-threshold) continuum is delayed, and happens at large internuclear distances. This suggests that the influence of the projectile breakup on the complete fusion process can be related essentially to the direct breakup to the (6)Li high-lying continuum spectrum.
Resumo:
alpha-d coincidence data are studied for the (6)Li + (59)Co reaction at E(lab) = 29.6 MeV. A kinematic analysis is used to identify which process, leading to the same final state, has the major contribution for selected angular regions. The contributions of the (6)Li sequential and direct breakup to the incomplete fusion/transfer process is discussed by considering the corresponding lifetimes obtained by using a semiclassical approach.
Resumo:
Nuclear (p,alpha) reactions destroying the so-called ""light-elements"" lithium, beryllium and boron have been largely studied in the past mainly because their role in understanding some astrophysical phenomena, i.e. mixing-phenomena occurring in young F-G stars [1]. Such mechanisms transport the surface material down to the region close to the nuclear destruction zone, where typical temperatures of the order of similar to 10(6) K are reached. The corresponding Gamow energy E(0)=1.22 (Z(x)(2)Z(X)(2)T(6)(2))(1/3) [2] is about similar to 10 keV if one considers the ""boron-case"" and replaces in the previous formula Z(x) = 1, Z(X) = 5 and T(6) = 5. Direct measurements of the two (11)B(p,alpha(0))(8)Be and (10)B(p,alpha)(7)Be reactions in correspondence of this energy region are difficult to perform mainly because the combined effects of Coulomb barrier penetrability and electron screening [3]. The indirect method of the Trojan Horse (THM) [4-6] allows one to extract the two-body reaction cross section of interest for astrophysics without the extrapolation-procedures. Due to the THM formalism, the extracted indirect data have to be normalized to the available direct ones at higher energies thus implying that the method is a complementary tool in solving some still open questions for both nuclear and astrophysical issues [7-12].
Resumo:
Direct measurements in the last decades have highlighted a new problem related to the lowering of the Coulomb barrier between the interacting nuclei due to the presence of the ""electron screening"" in the laboratory measurements. It was systematically observed that the presence of the electronic cloud around the interacting ions in measurements of nuclear reactions cross sections at astrophysical energies gives rise to an enhancement of the astrophysical S(E)-factor as lower and lower energies are explored [1]. Moreover, at present Such an effect is not well understood as the value of the potential for screening extracted from these measurements is higher than the tipper limit of theoretical predictions (adiabatic limit). On the other hand, the electron screening potential in laboratory measurement is different from that occurring in stellar plasmas thus the quantity of interest in astrophysics is the so-called ""bare nucleus cross section"". This quantity can only be extrapolated in direct measurements. These are the reasons that led to a considerable growth on interest in indirect measurement techniques and in particular the Trojan Horse Method (THM) [2,3]. Results concerning the bare nucleus cross sections measurements will be shown in several cases of astrophysical interest. In those cases the screening potential evaluated by means of the THM will be compared with the adiabatic limit and results arising from extrapolation in direct measurements.
Resumo:
We present a mathematically rigorous quantum-mechanical treatment of a one-dimensional non-relativistic motion of a particle in the potential field V(x) = g(1)x(-1) + g(2)x(-2), x is an element of R(+) = [0, infinity). For g(2) > 0 and g(1) < 0, the potential is known as the Kratzer potential V(K)(x) and is usually used to describe molecular energy and structure, interactions between different molecules and interactions between non-bonded atoms. We construct all self-adjoint Schrodinger operators with the potential V(x) and represent rigorous solutions of the corresponding spectral problems. Solving the first part of the problem, we use a method of specifying self-adjoint extensions by (asymptotic) self-adjoint boundary conditions. Solving spectral problems, we follow Krein`s method of guiding functionals. This work is a continuation of our previous works devoted to the Coulomb, Calogero and Aharonov-Bohm potentials.
Resumo:
We use a new technique to investigate the systematic behavior of near barrier complete fusion, total fusion and total reaction cross sections of weakly bound systems. A dimensionless fusion excitation function is used as a benchmark to which renormalized fusion data are compared and dynamic breakup effects can be disentangled from static effects. The same reduction procedure is used to study the effect of the direct reaction mechanisms on the total reaction cross section.
Resumo:
We consider the energy levels of a hydrogen-like atom in the framework of theta-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S(1/2), 2P(1/2) and 2P(3/2) is lifted completely, such that new transition channels are allowed. (C) 2009 Elsevier B.V. All rights reserved.