938 resultados para Control theory
Resumo:
Balance problems in hemiparetic patients after stroke can be caused by different impairments in the physiological systems involved in Postural control, including sensory afferents, movement strategies, biomechanical constraints, cognitive processing, and perception of verticality. Balance impairments and disabilities must be appropriately addressed. This article reviews the most common balance abnormalities in hemiparetic patients with stroke and the main tools used to diagnose them.
Resumo:
Background: Chronic pelvic pain (CPP) is a lower abdominal pain lasting at least 6 months, occurring continuously or intermittently and not associated exclusively with menstruation or intercourse. Although the musculoskeletal system has been found to be involved in CPP, few studies have assessed the contribution of posture in women with CPP. We aimed to determine if the frequency of postural changes was higher in women with CPP than healthy subjects. Methods: A case-control study included 108 women with CPP of more than 6 months' duration (CPP group) who consecutively attended at the Hospital of the University of Sao Paulo and 48 healthy female volunteers (control group). Postural assessment was noninvasive and performed in the standing position, with the reference points of Kendall used as normal parameters. Factors associated with CPP were assessed by logistic regression analysis. Results: Logistic regression showed that the independent factors associated with CPP were postural changes in the cervical spine (OR 4.1; 95% CI 1.6-10.7; p < 0.01) and scapulae (OR 2.9; 95% CI 1.1-7.6; p < 0.05). Conclusion: Musculoskeletal changes were associated with CPP in 34% of women. These findings suggest that a more detailed assessment of women with CPP is necessary for better diagnosis and for more effective treatment.
Resumo:
Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes.
Resumo:
The most relevant clinical trials, assessing the role of glycemic control in reducing cardiovascular risk, are examined. The UKPDS was the first to address this issue. More recent trials (ACCORD, ADVANCE and VADT) are controversial and evidences did not support that strict glycemic control (reflected by normal glycated hemoglobin) exclusively is sufficient to reduce cardiovascular risk in complicated individuals with long-term type 2 diabetes mellitus. Some possible reasons for controversies are included.
Resumo:
Pathogenicity of strains of the entomopathogenic fungus Beauveria bassiana and endophytic strains of Beauveria sp against the bovine tick Rhipicephalus (Boophilus) microplus was tested in laboratory bioassays and under field conditions. Suspensions containing 10(5), 10(7) and 10(9) conidia/mL were prepared of each fungal strain for laboratory bioassays. The ticks were maintained at 28 degrees C, 90 +/- 5% relative humidity, and the following variables were evaluated: initial female weight, egg weight, hatching percentage, reproductive efficiency, and percentage control. For tests under field conditions, a Beauveria suspension containing 10(6) conidia/mL was sprayed on tick-infested cows. After 72 h, the ticks were collected to estimate mortality under field conditions. Laboratory bioassays showed a mortality of 20 to 50% of the ticks seven days after inoculation with 10(7) Beauveria conidia/mL. Under field conditions 10(6) Beauveria conidia/mL induced 18-32% mortality. All Beauveria strains were effective in biological control of R. (Boophilus) microplus under laboratory and field test conditions. This is the first demonstration that endophytic fungi can be used for biological control of the cattle tick; this could help reduce environmental contamination by diminishing the need for chemical acaricides. Two endophytic strains were isolated from maize leaves and characterized by molecular sequencing of 5.8S rDNA ITS1 and ITS2 and morphological analyses of conidia. We found that these two endophytic Beauveria isolates, designated B95 and B157, are close to Beauveria amorpha.
Resumo:
Marine turtles are increasingly being threatened worldwide by anthropogenic activities. Better understanding of their life cycle, behavior and population structure is imperative for the design of adequate conservation strategies. The mtDNA control region is a fast-evolving matrilineal marker that has been employed in the study of marine turtle populations. We developed and tested a simple molecular tracing system for Caretta caretta mtDNA haplotypes by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Using this technique, we were able to distinguish the SSCP patterns of 18 individuals of the haplotypes CC-A4, CC-A24 and CCxLO, which are commonly found in turtles sampled on the Brazilian coast. When we analyzed 15 turtles with previously unknown sequences, we detected two other haplotypes, in addition to the other four. Based on DNA sequencing, they were identified as the CC-A17 and CC-A1 haplotypes. Further analyses were made with the sea turtles, Chelonia mydas (N = 8), Lepidochelys olivacea (N = 3) and Eretmochelys imbricata (N = 1), demonstrating that the PCR-SSCP technique is able to distinguish intra-and interspecific variation in the family Cheloniidae. We found that this technique can be useful for identifying sea turtle mtDNA haplotypes, reducing the need for sequencing.
Resumo:
Background: Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. Methodology/Principal Findings: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. Conclusions: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.
Resumo:
This paper studies semistability of the recursive Kalman filter in the context of linear time-varying (LTV), possibly nondetectable systems with incorrect noise information. Semistability is a key property, as it ensures that the actual estimation error does not diverge exponentially. We explore structural properties of the filter to obtain a necessary and sufficient condition for the filter to be semistable. The condition does not involve limiting gains nor the solution of Riccati equations, as they can be difficult to obtain numerically and may not exist. We also compare semistability with the notions of stability and stability w.r.t. the initial error covariance, and we show that semistability in a sense makes no distinction between persistent and nonpersistent incorrect noise models, as opposed to stability. In the linear time invariant scenario we obtain algebraic, easy to test conditions for semistability and stability, which complement results available in the context of detectable systems. Illustrative examples are included.
Resumo:
We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field phi(c), and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schrodinger field representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle point for fixed boundary fields, which is the classical field phi(c), a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally reduced effective theory for the thermal system. We calculate the two-point correlation as an example.
Resumo:
We study the question of stability of the ground state of a scalar theory which is a generalization of the phi(3) theory and has some similarity to gravity with a cosmological constant. We show that the ground state of the theory at zero temperature becomes unstable above a certain critical temperature, which is evaluated in closed form at high temperature.
Resumo:
The analysis of Macdonald for electrolytes is generalized to the case in which two groups of ions are present. We assume that the electrolyte can be considered as a dispersion of ions in a dielectric liquid, and that the ionic recombination can be neglected. We present the differential equations governing the ionic redistribution when the liquid is subjected to an external electric field, describing the simultaneous diffusion of the two groups of ions in the presence of their own space charge fields. We investigate the influence of the ions on the impedance spectroscopy of an electrolytic cell. In the analysis, we assume that each group of ions have equal mobility, the electrodes perfectly block and that the adsorption phenomena can be neglected. In this framework, it is shown that the real part of the electrical impedance of the cell has a frequency dependence presenting two plateaux, related to a type of ambipolar and free diffusion coefficients. The importance of the considered problem on the ionic characterization performed by means of the impedance spectroscopy technique was discussed. (c) 2008 American Institute of Physics.
Resumo:
We use the boundary effective theory approach to thermal field theory in order to calculate the pressure of a system of massless scalar fields with quartic interaction. The method naturally separates the infrared physics, and is essentially nonperturbative. To lowest order, the main ingredient is the solution of the free Euler-Lagrange equation with nontrivial (time) boundary conditions. We derive a resummed pressure, which is in good agreement with recent calculations found in the literature, following a very direct and compact procedure.
Resumo:
Spectral changes of Na(2) in liquid helium were studied using the sequential Monte Carlo-quantum mechanics method. Configurations composed by Na(2) surrounded by explicit helium atoms sampled from the Monte Carlo simulation were submitted to time-dependent density-functional theory calculations of the electronic absorption spectrum using different functionals. Attention is given to both line shift and line broadening. The Perdew, Burke, and Ernzerhof (PBE1PBE, also known as PBE0) functional, with the PBE1PBE/6-311++G(2d,2p) basis set, gives the spectral shift, compared to gas phase, of 500 cm(-1) for the allowed X (1)Sigma(+)(g) -> B (1)Pi(u) transition, in very good agreement with the experimental value (700 cm(-1)). For comparison, cluster calculations were also performed and the first X (1)Sigma(+)(g) -> A (1)Sigma(+)(u) transition was also considered.
Resumo:
We study the one-loop low-energy effective action for the higher-derivative superfield gauge theory coupled to chiral matter.
Resumo:
We propose a field theory model for dark energy and dark matter in interaction. Comparing the classical solutions of the field equations with the observations of the CMB shift parameter, baryonic acoustic oscillations, lookback time, and the Gold supernovae sample, we observe a possible interaction between dark sectors with energy decay from dark energy into dark matter. The observed interaction provides an alleviation to the coincidence problem.