891 resultados para Control and Systems Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funded by UK Government's Overseas Territories Environmental Programme (OTEP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The effect of work on blood pressure (BP) in a general population with appropriate adjustment for confounders is not well defined. High job control has been found to be associated with lower BP and with nocturnal BP dipping. However, with older workers this may be compromised and has not been studied extensively. Methods: A cross-sectional study was carried out on a primary care-based sample (N=2047) aged 50–69 years. Data were collected on sociodemographic factors, medication, clinic, and ambulatory blood pressure. Job control was measured using two scales from the Copenhagen Psychosocial Questionnaire (COPSOQ) (possibility for development and influence at work). Nocturnal systolic BP (SBP) dipping was the reduction in SBP from day- to night-time using ambulatory SBP readings. Results: In general, BP increased with age, male gender, and higher body mass index. Workers with high influence at work and high possibility for development were more likely to have high asleep SBP [odds ratio (OR) 2.13, 95% confidence interval (95% CI) 1.05–4.34, P=0.04], (OR 2.27, 95% CI 1.11–4.66, P=0.03) respectively. Influence at work and awake BP were inversely associated: awake SBP (OR 2.44, 95% CI 1.35–4.41, P<0.01), awake DBP (OR 2.42, 95% CI 1.24–4.72, P=0.01). No association was seen between job control and nocturnal SBP dipping. Conclusion: Older workers with high job control may be more at risk of cardiovascular disease resulting from high day- and night-time BP with no evidence of nocturnal dipping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short-term changes in sea surface conditions controlling the thermohaline circulation in the northern North Atlantic are expected to be especially efficient in perturbing global climate stability. Here we assess past variability of sea surface temperature (SST) in the northeast Atlantic and Norwegian Sea during Marine Isotope Stage (MIS) 2 and, in particular, during the Last Glacial Maximum (LGM). Five high-resolution SST records were established on a meridional transect (53°N-72°N) to trace centennial-scale oscillations in SST and sea-ice cover. We used three independent computational techniques (SIMMAX modern analogue technique, Artificial Neural Networks (ANN), and Revised Analog Method (RAM)) to reconstruct SST from planktonic foraminifer census counts. SIMMAX and ANN reproduced short-term SST oscillations of similar magnitude and absolute levels, while RAM, owing to a restrictive analog selection, appears less suitable for reconstructing "cold end" SST. The SIMMAX and ANN SST reconstructions support the existence of a weak paleo-Norwegian Current during Dansgaard-Oeschger (DO) interstadials number 4, 3, 2, and 1. During the LGM, two warm incursions of 7°C water to occurred in the northern North Atlantic but ended north of the Iceland Faroe Ridge. A rough numerical estimate shows that the near-surface poleward heat transfer from 53° across the Iceland-Faroe Ridge up to to 72° N dropped to less than 60% of the modern value during DO interstadials and to almost zero during DO stadials. Summer sea ice was generally confined to the area north of 70°N and only rarely expanded southward along the margins of continental ice sheets. Internal LGM variability of North Atlantic (>40°N) SST in the GLAMAP 2000 compilation (Sarnthein et al., 2003, doi:10.1029/2002PA000771; Pflaumann et al., 2003, doi:10.1029/2002PA000774) indicates maximum instability in the glacial subpolar gyre and at the Iberian Margin, while in the Nordic Seas, SST was continuously low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Patient safety is concerned with preventable harm in healthcare, a subject that became a focus for study in the UK in the late 1990s. How to improve patient safety, presented both a practical and a research challenge in the early 2000s, leading to the eleven publications presented in this thesis. Research question The overarching research question was: What are the key organisational and systems factors that impact on patient safety, and how can these best be researched? Methods Research was conducted in over 40 acute care organisations in the UK and Europe between 2006 and 2013. The approaches included surveys, interviews, documentary analysis and non-participant observation. Two studies were longitudinal. Results The findings reveal the nature and extent of poor systems reliability and its effect on patient safety; the factors underpinning cases of patient harm; the cultural issues impacting on safety and quality; and the importance of a common language for quality and safety across an organisation. Across the publications, nine key organisational and systems factors emerged as important for patient safety improvement. These include leadership stability; data infrastructure; measurement capability; standardisation of clinical systems; and creating an open and fair collective culture where poor safety is challenged. Conclusions and contribution to knowledge The research presented in the publications has provided a more complete understanding of the organisation and systems factors underpinning safer healthcare. Lessons are drawn to inform methods for future research, including: how to define success in patient safety improvement studies; how to take into account external influences during longitudinal studies; and how to confirm meaning in multi-language research. Finally, recommendations for future research include assessing the support required to maintain a patient safety focus during periods of major change or austerity; the skills needed by healthcare leaders; and the implications of poor data infrastructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering because “those who cannot remember the past are condemned to repeat it.” This retrospective represents a further step forward to understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also define a set of milestones that represent a convergence or divergence of the software development methodologies. These milestones do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help in the evolution of the other one.