675 resultados para Congestion
Resumo:
B-ISDN is a universal network which supports diverse mixes of service, applications and traffic. ATM has been accepted world-wide as the transport technique for future use in B-ISDN. ATM, being a simple packet oriented transfer technique, provides a flexible means for supporting a continuum of transport rates and is efficient due to possible statistical sharing of network resources by multiple users. In order to fully exploit the potential statistical gain, while at the same time provide diverse service and traffic mixes, an efficient traffic control must be designed. Traffic controls which include congestion and flow control are a fundamental necessity to the success and viability of future B-ISDN. Congestion and flow control is difficult in the broadband environment due to the high speed link, the wide area distance, diverse service requirements and diverse traffic characteristics. Most congestion and flow control approaches in conventional packet switched networks are reactive in nature and are not applicable in the B-ISDN environment. In this research, traffic control procedures mainly based on preventive measures for a private ATM-based network are proposed and their performance evaluated. The various traffic controls include CAC, traffic flow enforcement, priority control and an explicit feedback mechanism. These functions operate at call level and cell level. They are carried out distributively by the end terminals, the network access points and the internal elements of the network. During the connection set-up phase, the CAC decides the acceptance or denial of a connection request and allocates bandwidth to the new connection according to three schemes; peak bit rate, statistical rate and average bit rate. The statistical multiplexing rate is based on a `bufferless fluid flow model' which is simple and robust. The allocation of an average bit rate to data traffic at the expense of delay obviously improves the network bandwidth utilisation.
Resumo:
The explosive growth in microprocessor technology and the increasing use of computers to store information has increased the demand for data communication channels. Because of this, data communication to mobile vehicles is increasing rapidly. In addition, data communication is seen as a method of relieving the current congestion of mobile radio telephone bands in the U.K. Highly reliable data communication over mobile radio channels is particularly difficult to achieve, primarily due to fading caused by multipath interference. In this thesis a data communication system is described for use over radio channels impaired by multipath interference. The thesis first describes radio communication in general, and multipath interference In particular. The practical aspects of fading channels are stressed because of their importance in the development of the system. The current U.K. land mobile radio scene is then reviewed, with particular emphasis on the use of existing mobile radio equipment for data communication purposes. The development of the data communication system is then described. This system is microprocessor based and uses an advanced form of automatic request repeat (ARQ) operation. It can be configured to use either existing radio-telephone equipment, totally new equipment specifically designed for data communication, or any combination of the two. Due to its adaptability, the system can automatically optimise itself for use over any channel, even if the channel parameters are changing rapidly. Results obtained from a particular implementation of the system, which is described in full, are presented. These show how the operation of the system has to change to accomodate changes in the channel. Comparisons are made between the practical results and the theoretical limits of the system.
Resumo:
The Fibre Distributed Data Interface (FDDI) represents the new generation of local area networks (LANs). These high speed LANs are capable of supporting up to 500 users over a 100 km distance. User traffic is expected to be as diverse as file transfers, packet voice and video. As the proliferation of FDDI LANs continues, the need to interconnect these LANs arises. FDDI LAN interconnection can be achieved in a variety of different ways. Some of the most commonly used today are public data networks, dial up lines and private circuits. For applications that can potentially generate large quantities of traffic, such as an FDDI LAN, it is cost effective to use a private circuit leased from the public carrier. In order to send traffic from one LAN to another across the leased line, a routing algorithm is required. Much research has been done on the Bellman-Ford algorithm and many implementations of it exist in computer networks. However, due to its instability and problems with routing table loops it is an unsatisfactory algorithm for interconnected FDDI LANs. A new algorithm, termed ISIS which is being standardized by the ISO provides a far better solution. ISIS will be implemented in many manufacturers routing devices. In order to make the work as practical as possible, this algorithm will be used as the basis for all the new algorithms presented. The ISIS algorithm can be improved by exploiting information that is dropped by that algorithm during the calculation process. A new algorithm, called Down Stream Path Splits (DSPS), uses this information and requires only minor modification to some of the ISIS routing procedures. DSPS provides a higher network performance, with very little additional processing and storage requirements. A second algorithm, also based on the ISIS algorithm, generates a massive increase in network performance. This is achieved by selecting alternative paths through the network in times of heavy congestion. This algorithm may select the alternative path at either the originating node, or any node along the path. It requires more processing and memory storage than DSPS, but generates a higher network power. The final algorithm combines the DSPS algorithm with the alternative path algorithm. This is the most flexible and powerful of the algorithms developed. However, it is somewhat complex and requires a fairly large storage area at each node. The performance of the new routing algorithms is tested in a comprehensive model of interconnected LANs. This model incorporates the transport through physical layers and generates random topologies for routing algorithm performance comparisons. Using this model it is possible to determine which algorithm provides the best performance without introducing significant complexity and storage requirements.
Resumo:
In recent years the optical domain has been traditionally reserved for node-to-node transmission with the processing and switching achieved entirely in the electrical domain. However, with the constantly increasing demand for bandwidth and the resultant increase in transmission speeds, there is a very real fear that current electronic technology as used for processing will not be able to cope with future demands. Fuelled by this requirement for faster processing speeds, considerable research is currently being carried out into the potential of All-optical processing. One of the fundamental obstacles in realising All-optical processing is the requirement for All-optical buffering. Without all-optical buffers it is extremely difficult to resolve situations such as contention and congestion. Many devices have been proposed to solve this problem however none of them provide the perfect solution. The subject of this research is to experimentally demonstrate a novel all-optical memory device. Unlike many previously demonstrated optical storage devices the device under consideration utilises only a single loop mirror and a single SOA as its switch, whilst providing full regenerative capabilities required for long-term storage. I will explain some of the principles and characteristics of the device, which will then be experimentally demonstrated. The device configuration will then be studied and investigated as to its suitability for Hybrid Integrated Technology.
Resumo:
To exploit the popularity of TCP as still the dominant sender and protocol of choice for transporting data reliably across the heterogeneous Internet, this thesis explores end-to-end performance issues and behaviours of TCP senders when transferring data to wireless end-users. The theme throughout is on end-users located specifically within 802.11 WLANs at the edges of the Internet, a largely untapped area of work. To exploit the interests of researchers wanting to study the performance of TCP accurately over heterogeneous conditions, this thesis proposes a flexible wired-to-wireless experimental testbed that better reflects conditions in the real-world. To exploit the transparent functionalities between TCP in the wired domain and the IEEE 802.11 WLAN protocols, this thesis proposes a more accurate methodology for gauging the transmission and error characteristics of real-world 802.11 WLANs. It also aims to correlate any findings with the functionality of fixed TCP senders. To exploit the popularity of Linux as a popular operating system for many of the Internet’s data servers, this thesis studies and evaluates various sender-side TCP congestion control implementations within the recent Linux v2.6. A selection of the implementations are put under systematic testing using real-world wired-to-wireless conditions in order to screen and present a viable candidate/s for further development and usage in the modern-day heterogeneous Internet. Overall, this thesis comprises a set of systematic evaluations of TCP senders over 802.11 WLANs, incorporating measurements in the form of simulations, emulations, and through the use of a real-world-like experimental testbed. The goal of the work is to ensure that all aspects concerned are comprehensively investigated in order to establish rules that can help to decide under which circumstances the deployment of TCP is optimal i.e. a set of paradigms for advancing the state-of-the-art in data transport across the Internet.
Resumo:
In this paper we investigate rate adaptation algorithm SampleRate, which spends a fixed time on bit-rates other than the currently measured best bit-rate. A simple but effective analytic model is proposed to study the steady-state behavior of the algorithm. Impacts of link condition, channel congestion and multi-rate retry on the algorithm performance are modeled. Simulations validate the model. It is also observed there is still a large performance gap between SampleRate and optimal scheme in case of high frame collision probability.
Resumo:
Wireless Mesh Networks (WMNs) have emerged as a key technology for the next generation of wireless networking. Instead of being another type of ad-hoc networking, WMNs diversify the capabilities of ad-hoc networks. Several protocols that work over WMNs include IEEE 802.11a/b/g, 802.15, 802.16 and LTE-Advanced. To bring about a high throughput under varying conditions, these protocols have to adapt their transmission rate. In this paper, we have proposed a scheme to improve channel conditions by performing rate adaptation along with multiple packet transmission using packet loss and physical layer condition. Dynamic monitoring, multiple packet transmission and adaptation to changes in channel quality by adjusting the packet transmission rates according to certain optimization criteria provided greater throughput. The key feature of the proposed method is the combination of the following two factors: 1) detection of intrinsic channel conditions by measuring the fluctuation of noise to signal ratio via the standard deviation, and 2) the detection of packet loss induced through congestion. We have shown that the use of such techniques in a WMN can significantly improve performance in terms of the packet sending rate. The effectiveness of the proposed method was demonstrated in a simulated wireless network testbed via packet-level simulation.
Resumo:
Optimal paths connecting randomly selected network nodes and fixed routers are studied analytically in the presence of a nonlinear overlap cost that penalizes congestion. Routing becomes more difficult as the number of selected nodes increases and exhibits ergodicity breaking in the case of multiple routers. The ground state of such systems reveals nonmonotonic complex behaviors in average path length and algorithmic convergence, depending on the network topology, and densities of communicating nodes and routers. A distributed linearly scalable routing algorithm is also devised. © 2012 American Physical Society.
Resumo:
Networking encompasses a variety of tasks related to the communication of information on networks; it has a substantial economic and societal impact on a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption requires new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with nonlinear large-scale systems. This review aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications. © 2013 IOP Publishing Ltd.
Resumo:
Link adaptation (LA) plays an important role in adapting an IEEE 802.11 network to wireless link conditions and maximizing its capacity. However, there is a lack of theoretic analysis of IEEE 802.11 LA algorithms. In this article, we propose a Markov chain model for an 802.11 LA algorithm (ONOE algorithm), aiming to identify the problems and finding the space of improvement for LA algorithms. We systematically model the impacts of frame corruption and collision on IEEE 802.11 network performance. The proposed analytic model was verified by computer simulations. With the analytic model, it can be observed that ONOE algorithm performance is highly dependent on the initial bit rate and parameter configurations. The algorithm may perform badly even under light channel congestion, and thus, ONOE algorithm parameters should be configured carefully to ensure a satisfactory system performance. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
Nowadays, road safety and traffic congestion are major concerns worldwide. This is why research on vehicular communication is very vital. In static scenarios vehicles behave typically like in an office network where nodes transmit without moving and with no defined position. This paper analyses the impact of context information on existing popular rate adaptation algorithms. Our simulation was done in MATLAB by observing the impact of context information on these algorithms. Simulation was performed for both static and mobile cases.Our simulations are based on IEEE 802.11p wireless standard. For static scenarios vehicles do not move and without defined positions, while for the mobile case, vehicles are mobile with uniformly selected speed and randomized positions. Network performance are analysed using context information. Our results show that in mobility when context information is used, the system performance can be improved for all three rate adaptation algorithms. That can be explained by that with range checking, when many vehicles are out of communication range, less vehicles contend for network resources, thereby increasing the network performances. © 2013 IEEE.
Resumo:
Emerging vehicular comfort applications pose a host of completely new set of requirements such as maintaining end-to-end connectivity, packet routing, and reliable communication for internet access while on the move. One of the biggest challenges is to provide good quality of service (QoS) such as low packet delay while coping with the fast topological changes. In this paper, we propose a clustering algorithm based on minimal path loss ratio (MPLR) which should help in spectrum efficiency and reduce data congestion in the network. The vehicular nodes which experience minimal path loss are selected as the cluster heads. The performance of the MPLR clustering algorithm is calculated by rate of change of cluster heads, average number of clusters and average cluster size. Vehicular traffic models derived from the Traffic Wales data are fed as input to the motorway simulator. A mathematical analysis for the rate of change of cluster head is derived which validates the MPLR algorithm and is compared with the simulated results. The mathematical and simulated results are in good agreement indicating the stability of the algorithm and the accuracy of the simulator. The MPLR system is also compared with V2R system with MPLR system performing better. © 2013 IEEE.
Resumo:
Emerging vehicular comfort applications pose a host of completely new set of requirements such as maintaining end-to-end connectivity, packet routing, and reliable communication for internet access while on the move. One of the biggest challenges is to provide good quality of service (QoS) such as low packet delay while coping with the fast topological changes. In this paper, we propose a clustering algorithm based on minimal path loss ratio (MPLR) which should help in spectrum efficiency and reduce data congestion in the network. The vehicular nodes which experience minimal path loss are selected as the cluster heads. The performance of the MPLR clustering algorithm is calculated by rate of change of cluster heads, average number of clusters and average cluster size. Vehicular traffic models derived from the Traffic Wales data are fed as input to the motorway simulator. A mathematical analysis for the rate of change of cluster head is derived which validates the MPLR algorithm and is compared with the simulated results. The mathematical and simulated results are in good agreement indicating the stability of the algorithm and the accuracy of the simulator. The MPLR system is also compared with V2R system with MPLR system performing better. © 2013 IEEE.
Resumo:
The environment of a mobile ad hoc network may vary greatly depending on nodes' mobility, traffic load and resource conditions. In this paper we categorize the environment of an ad hoc network into three main states: an ideal state, wherein the network is relatively stable with sufficient resources; a congested state, wherein some nodes, regions or the network is experiencing congestion; and an energy critical state, wherein the energy capacity of nodes in the network is critically low. Each of these states requires unique routing schemes, but existing ad hoc routing protocols are only effective in one of these states. This implies that when the network enters into any other states, these protocols run into a sub optimal mode, degrading the performance of the network. We propose an Ad hoc Network State Aware Routing Protocol (ANSAR) which conditionally switches between earliest arrival scheme and a joint Load-Energy aware scheme depending on the current state of the network. Comparing to existing schemes, it yields higher efficiency and reliability as shown in our simulation results. © 2007 IEEE.
Resumo:
This paper introduces a joint load balancing and hotspot mitigation protocol for mobile ad-hoc network (MANET) termed by us as 'load_energy balance + hotspot mitigation protocol (LEB+HM)'. We argue that although ad-hoc wireless networks have limited network resources - bandwidth and power, prone to frequent link/node failures and have high security risk; existing ad hoc routing protocols do not put emphasis on maintaining robust link/node, efficient use of network resources and on maintaining the security of the network. Typical route selection metrics used by existing ad hoc routing protocols are shortest hop, shortest delay, and loop avoidance. These routing philosophy have the tendency to cause traffic concentration on certain regions or nodes, leading to heavy contention, congestion and resource exhaustion which in turn may result in increased end-to-end delay, packet loss and faster battery power depletion, degrading the overall performance of the network. Also in most existing on-demand ad hoc routing protocols intermediate nodes are allowed to send route reply RREP to source in response to a route request RREQ. In such situation a malicious node can send a false optimal route to the source so that data packets sent will be directed to or through it, and tamper with them as wish. It is therefore desirable to adopt routing schemes which can dynamically disperse traffic load, able to detect and remove any possible bottlenecks and provide some form of security to the network. In this paper we propose a combine adaptive load_energy balancing and hotspot mitigation scheme that aims at evenly distributing network traffic load and energy, mitigate against any possible occurrence of hotspot and provide some form of security to the network. This combine approach is expected to yield high reliability, availability and robustness, that best suits any dynamic and scalable ad hoc network environment. Dynamic source routing (DSR) was use as our underlying protocol for the implementation of our algorithm. Simulation comparison of our protocol to that of original DSR shows that our protocol has reduced node/link failure, even distribution of battery energy, and better network service efficiency.