894 resultados para Computer-Aided Engineering (CAD, CAE) and design
Resumo:
This paper presents models that can be used in the design of microstrip antennas for mobile communications. The antennas can be triangular or rectangular. The presented models are compared with deterministic and empirical models based on artificial neural networks (ANN) presented in the literature. The models are based on Perceptron Multilayer (PML) and Radial Basis Function (RBF) ANN. RBF based models presented the best results. Also, the models can be embedded in CAD systems, in order to design microstrip antennas for mobile communications.
Resumo:
A green ceramic tape micro heat exchanger was developed using LTCC technology. The device was designed by using a CAD software and 2D and 3D simulations using a CFD package (COMSOL Multiphysics) to evaluate the fluid behavior in the microchannels. The micro heat exchanger is composed of five thermal exchange plates in cross flow arrangement and two connecting plates; heat exchanger dimensions are 26 × 26 × 6 mm3. Preliminary tests were carried out to characterize the device both in atmospheric pressure and in vacuum. The same techniques used in vacuum technology were applied to check the rotameters and to prevent device leakages. Thermal performance of the micro heat exchanger was experimentally tested. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: This article describes a clinical report with a new system for guided surgical treatment and immediate load prosthesis in the flapless surgical technique. Case report: Based on a computed tomography (CT) of a 64 - year-old edentulous patient, the cross sections were reformatted and used to construct a virtual planning of the implants and a guide template in Dental Slice. Six dental implants were placed in the maxilla and mandible using a Slice Guide System. Following a 30-month in maxilla and 24-month in mandible healing period, the clinical and radiographic evaluation and computed tomography (CT) showed good clinical stability. The Slice Guide System proved satisfactory for the Flapless Surgical Technique in dental implants.
Resumo:
This paper considers the importance of using a top-down methodology and suitable CAD tools in the development of electronic circuits. The paper presents an evaluation of the methodology used in a computational tool created to support the synthesis of digital to analog converter models by translating between different tools used in a wide variety of applications. This tool is named MS 2SV and works directly with the following two commercial tools: MATLAB/Simulink and SystemVision. Model translation of an electronic circuit is achieved by translating a mixed-signal block diagram developed in Simulink into a lower level of abstraction in VHDL-AMS and the simulation project support structure in SystemVision. The method validation was performed by analyzing the power spectral of the signal obtained by the discrete Fourier transform of a digital to analog converter simulation model. © 2011 IEEE.
Resumo:
The aim of the present study was to evaluate the effect of disinfection and accelerated ageing on the dimensional stability and detail reproduction of a facial silicone with different types of nanoparticle. A total of 60 specimens were fabricated with Silastic MDX 4-4210 silicone and they were divided into three groups: colourless and pigmented with nanoparticles (make-up powder and ceramic powder). Half of the specimens of each group were disinfected with Efferdent tablets and half with neutral soap for 60 days. Afterwards, all specimens were subjected to accelerated ageing. Both dimensional stability and detail reproduction tests were performed after specimen fabrication (initial period), after chemical disinfection, and after accelerated ageing periods (252, 504 and 1008 hours). The dimensional stability test was conducted using AutoCAD software, while detail reproduction was analysed using a stereoscope magnifying glass. Dimensional stability values were statistically evaluated by analysis of variance (ANOVA) followed by Tukey's test (p < 0.01). Detail reproduction results were compared using a score. Chemical disinfection and also accelerated ageing affected the dimensional stability of the facial silicone with statistically significant results. The silicone's detail reproduction was not affected by these two factors regardless of nanoparticle type, disinfection and accelerated ageing. © 2012 Informa UK, Ltd.
Resumo:
Patients with congenital malformations, traumatic or pathological mutilation and maxillofacial developmental disorders can be restored aesthetically and emotionally by the production and use of facial prostheses. The aim of this study was to review the literature about the retention and processing methods of facial prostheses, and discuss their characteristics. A literature review on Medline (PubMed) database was performed by using the keywords maxillofacial prosthesis, silicone, resin, pigment, cosmetic, prosthetic nose, based on articles published from 1956 to 2010. Several methods of retention, from adhesives to the placement of implants, and different processing methods such as laser, CAD/CAM and rapid prototyping technologies have been reported. There are advantages and disadvantages of each procedure, and none can be classified as better compared to others.
Resumo:
The representation of real objects in virtual environments has applications in many areas, such as cartography, mixed reality and reverse engineering. The generation of these objects can be performed through two ways: manually, with CAD (Computer Aided Design) tools, or automatically, by means of surface reconstruction techniques. The simpler the 3D model, the easier it is to process and store it. However, this methods can generate very detailed virtual elements, that can result in some problems when processing the resulting mesh, because it has a lot of edges and polygons that have to be checked at visualization. Considering this context, it can be applied simplification algorithms to eliminate polygons from resulting mesh, without change its topology, generating a lighter mesh with less irrelevant details. The project aimed the study, implementation and comparative tests of simplification algorithms applied to meshes generated through a reconstruction pipeline based on point clouds. This work proposes the realization of the simplification step, like a complement to the pipeline developed by (ONO et al., 2012), that developed reconstruction through cloud points obtained by Microsoft Kinect, and then using Poisson algorithm
Resumo:
The representation of real objects in virtual environments has applications in many areas, such as cartography, mixed reality and reverse engineering. The generation of these objects can be performed in two ways: manually, with CAD (Computer Aided Design) tools, or automatically, by means of surface reconstruction techniques. The simpler the 3D model, the easier it is to process and store it. Multiresolution reconstruction methods can generate polygonal meshes in different levels of detail and, to improve the response time of a computer program, distant objects can be represented with few details, while more detailed models are used in closer objects. This work presents a new approach to multiresolution surface reconstruction, particularly interesting to noisy and low definition data, for example, point clouds captured with Kinect sensor
Resumo:
This study aimed to examine the reverse engineering and respond to a concern about the possible application of this concept in art, breaking down barriers and breaking paradigms. Using 3D scanning, the art of computer aided design and manufacturing – CAD/CAM, machining by computer numerical control - CNC, engineering, and applying this methodology in the arts especially in sculpture, it is possible to dematerialize a artwork, virtualizes it in 3D programs, make speeches, and process a new work, a new art elsewhere. By the example of surgeries at a distance, the artist, or technical author could produce their works, and materialize them anywhere. In other words, do the reverse gear. It discusses the relationship between art and technology, the role of the author, the viewer, which can interfere with the interactivity that case by stating that art, exists only in the look and feel of the viewer.
Resumo:
This paper aims to show some advantages brought by the computer graphics and inter-disciplinary communication within the academic institution UNESPBauru, using it as a teaching tool in undergraduate engineering and design. The communication in the classroom could be reconfigured through the adoption of new technologies by drawing a parallel between old and new programmatic contents, setting goals and parameters to improve communication between teacher and student, transferring and sediment of the given content and increasing production in quantity and complexity of work undertaken by students. As an example of computer graphics use, this work presents a final graduation work that was successful in the market, "Teardrop Trailer Caracol", as result of the final adoption of CAD technology as a teaching tool, design and production.
Resumo:
Regardless its power rate, the tractors are the most used source in operations of tillage. Thus, due to the expansion of cultivated areas and the need of striking application of technologies to meet the advance of agribusiness, it has been shown that these machines are concentrated during the work periods, the physical and mechanical actions to perform the activity. So, it's possible to realize that the time of physical exposures and the operational decision-making are related with the job station comfort. In regard to what was mentioned, this paper's main objective is to design an ergonomically viable seat to furnish the operational requirements of the tractor driver, using the new CAD / CAE technologies in order to provide optimal comfort to the relationship between human being and machines.
Resumo:
The appropriate use of computer aided technologies, allied to the concepts and design guidelines, grounded in biology, stimulated the development of a solar toilet, able to convert human waste into compost, rich in nutrients for use in gardens, farms and small farms. This transdisciplinary approach is presented as a necessary tool to be used in academia, integrating and developing activities previously disconnected. The solar toilet also called green bathroom, combines the most modern concepts and technologies of computer-aided design, design, selection of materials and microbiological control, reaching biologically correct and safe composting of waste, ensuring the viability of the project terms of cost, deployment, use and environmental safety, such as supporting sustainable development. It is also planned to install a pilot project in a small community with the aim of assessing its implementation and use as a complementary activity and university extension.
Resumo:
The high competitiveness and the search for newtechnologies that differentiate the product from the project,require the use of new digital tools. The computer aideddesign - Computed Aided Design (CAD), with electronicmodeling, simulation, structural analysis and production,performed in a virtual environment through the applicationof specific software, are available but their use is stilllimited. There are various software available in languagesand extensions to industrial production which, from 3Dmodeling, they can manage through Computer NumericalControl - Computed Numerical Control (CNC) machiningcenters, laminating, stamping, mold making and otherprocesses productive. This project aims to encouragecreativity and entrepreneurship in the community throughthe provision of technology computer aided design - CAD,with a view to implementation of machining technology.
Resumo:
With the advancement of computer technology and the availability of technology computer aided design (CAD) errors in the designs are getting smaller. To this end the project aims to assess the reliability of the machine (CNC), which was designed by students of mechanical engineering college engineering - UNESP Bauru, by designing, modeling, simulation and machining an airfoil automotive. The profile template selected for the study will be a NACA 0012 machined plates in medium density fiberboard (MDF) and will be performed with a structural analysis simulation using finite elements and a software CFD (Computational Fluid Dynamics), and test the real scale model in a wind tunnel. The results obtained in the wind tunnel and CFD software will be compared to see the error in the machining process.
Resumo:
The elimination of all external incisions is an important step in reducing the invasiveness of surgical procedures. Natural Orifice Translumenal Endoscopic Surgery (NOTES) is an incision-less surgery and provides explicit benefits such as reducing patient trauma and shortening recovery time. However, technological difficulties impede the widespread utilization of the NOTES method. A novel robotic tool has been developed, which makes NOTES procedures feasible by using multiple interchangeable tool tips. The robotic tool has the capability of entering the body cavity through an orifice or a single incision using a flexible articulated positioning mechanism and once inserted is not constrained by incisions, allowing for visualization and manipulations throughout the cavity. Multiple interchangeable tool tips of the robotic device initially consist of three end effectors: a grasper, scissors, and an atraumatic Babcock clamp. The tool changer is capable of selecting and switching between the three tools depending on the surgical task using a miniature mechanism driven by micro-motors. The robotic tool is remotely controlled through a joystick and computer interface. In this thesis, the following aspects of this robotic tool will be detailed. The first-generation robot is designed as a conceptual model for implementing a novel mechanism of switching, advancing, and controlling the tool tips using two micro-motors. It is believed that this mechanism achieves a reduction in cumbersome instrument exchanges and can reduce overall procedure time and the risk of inadvertent tissue trauma during exchanges with a natural orifice approach. Also, placing actuators directly at the surgical site enables the robot to generate sufficient force to operate effectively. Mounting the multifunctional robot on the distal end of an articulating tube provides freedom from restriction on the robot kinematics and helps solve some of the difficulties otherwise faced during surgery using NOTES or related approaches. The second-generation multifunctional robot is then introduced in which the overall size is reduced and two arms provide 2 additional degrees of freedom, resulting in feasibility of insertion through the esophagus and increased dexterity. Improvements are necessary in future iterations of the multifunctional robot; however, the work presented is a proof of concept for NOTES robots capable of abdominal surgical interventions.