901 resultados para Computer Network Resources


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A radial basis function network (RBFN) circuit for function approximation is presented. Simulation and experimental results show that the network has good approximation capabilities. The RBFN was a squared hyperbolic secant with three adjustable parameters amplitude, width and center. To test the network a sinusoidal and sine function,vas approximated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Translucent wavelength-division multiplexing optical networks use sparse placement of regenerators to overcome physical impairments and wavelength contention introduced by fully transparent networks, and achieve a performance close to fully opaque networks at a much less cost. In previous studies, we addressed the placement of regenerators based on static schemes, allowing for only a limited number of regenerators at fixed locations. This paper furthers those studies by proposing a dynamic resource allocation and dynamic routing scheme to operate translucent networks. This scheme is realized through dynamically sharing regeneration resources, including transmitters, receivers, and electronic interfaces, between regeneration and access functions under a multidomain hierarchical translucent network model. An intradomain routing algorithm, which takes into consideration optical-layer constraints as well as dynamic allocation of regeneration resources, is developed to address the problem of translucent dynamic routing in a single routing domain. Network performance in terms of blocking probability, resource utilization, and running times under different resource allocation and routing schemes is measured through simulation experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In this study, we propose an approach to support dynamic lightpath scheduling in such networks. To minimize blocking probability in a network that accommodates dynamic scheduled lightpath demands (DSLDs), resource allocation should be optimized in a dynamic manner. However, for the network users who desire deterministic services, resources must be reserved in advance and guaranteed for future use. These two objectives may be mutually incompatible. Therefore, we propose a two-phase dynamic lightpath scheduling approach to tackle this issue. The first phase is the deterministic lightpath scheduling phase. When a lightpath request arrives, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with the deterministic lightpath schedule. The second phase is the lightpath re-optimization phase, in which the network control plane re-provisions some already scheduled lightpaths. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce WDM network blocking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protecting a network against link failures is a major challenge faced by network operators. The protection scheme has to address two important objectives - fast recovery and minimizing the amount of backup resources needed. Every protection algorithm is a tradeoff between these two objectives. In this paper, we study the problem of segment protection. In particular, we investigate what is the optimal segment size that obtains the best tradeoff between the time taken for recovery and minimizing the bandwidth used by the backup segments. We focus on the uniform fixed-length segment protection method, where each primary path is divided into fixed-length segments, with the exception of the last segment in the path. We observe that the optimal segment size for a given network depends on several factors such as the topology and the ratio of the costs involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multicommodity flow (MF) problems have a wide variety of applications in areas such as VLSI circuit design, network design, etc., and are therefore very well studied. The fractional MF problems are polynomial time solvable while integer versions are NP-complete. However, exact algorithms to solve the fractional MF problems have high computational complexity. Therefore approximation algorithms to solve the fractional MF problems have been explored in the literature to reduce their computational complexity. Using these approximation algorithms and the randomized rounding technique, polynomial time approximation algorithms have been explored in the literature. In the design of high-speed networks, such as optical wavelength division multiplexing (WDM) networks, providing survivability carries great significance. Survivability is the ability of the network to recover from failures. It further increases the complexity of network design and presents network designers with more formidable challenges. In this work we formulate the survivable versions of the MF problems. We build approximation algorithms for the survivable multicommodity flow (SMF) problems based on the framework of the approximation algorithms for the MF problems presented in [1] and [2]. We discuss applications of the SMF problems to solve survivable routing in capacitated networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing a fault-tolerant connection in a network involves computation of diverse working and protection paths. The Shared Risk Link Group (SRLG) [1] concept is used to model several types of failure conditions such as link, node, fiber conduit, etc. In this work we focus on the problem of computing optimal SRLG/link diverse paths under shared protection. Shared protection technique improves network resource utilization by allowing protection paths of multiple connections to share resources. In this work we propose an iterative heuristic for computing SRLG/link diverse paths. We present a method to calculate a quantitative measure that provides a bounded guarantee on the optimality of the diverse paths computed by the heuristic. The experimental results on computing link diverse paths show that our proposed heuristic is efficient in terms of number of iterations required (time taken) to compute diverse paths when compared to other previously proposed heuristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Translucent WDM optical networks use sparse placement of regenerators to overcome the impairments and wavelength contention introduced by fully transparent networks, and achieve a performance close to fully opaque networks with much less cost. Our previous study proved the feasibility of translucent networks using sparse regeneration technique. We addressed the placement of regenerators based on static schemes allowing only fixed number of regenerators at fixed locations. This paper furthers the study by proposing a suite of dynamical routing schemes. Dynamic allocation, advertisement and discovery of regeneration resources are proposed to support sharing transmitters and receivers between regeneration and access functions. This study follows the current trend in optical networking industry by utilizing extension of IP control protocols. Dynamic routing algorithms, aware of current regeneration resources and link states, are designed to smartly route the connection requests under quality constraints. A hierarchical network model, supported by the MPLS-based control plane, is also proposed to provide scalability. Experiments show that network performance is improved without placement of extra regenerators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite recognition of key biotic processes in shaping the structure of biological communities, few empirical studies have explored the influences of abiotic factors on the structural properties of mutualistic networks. We tested whether temperature and precipitation contribute to temporal variation in the nestedness of mutualistic ant-plant networks. While maintaining their nested structure, nestedness increased with mean monthly precipitation and, particularly, with monthly temperature. Moreover, some species changed their role in network structure, shifting from peripheral to core species within the nested network. We could summarize that abiotic factors affect plant species in the vegetation (e.g., phenology), meaning presence/absence of food sources, consequently an increase/decrease of associations with ants, and finally, these variations to fluctuations in nestedness. While biotic factors are certainly important, greater attention needs to be given to abiotic factors as underlying determinants of the structures of ecological networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the process of creation of the Unified Health System (SUS) as a universal policy seeking to ensure comprehensive care, unscheduled assistance in primary healthcare units (UBS) is an unresolved challenge. The scope of this paper is to analyze the viewpoint of health professionals on the role of primary healthcare units in meeting this demand. It is a transversal study of qualitative data obtained through questionnaires and interviews with 106 medical practitioners from 6 emergency medical services and 190 professionals from 30 units. They explained why people seek emergency care for occurrences pertaining to primary care. The content analysis technique with thematic categories was used for data analysis. Lack of resources and problems with primary health unit work processes (50.8%) were the reasons most frequently cited by emergency care physicians to explain this inadequate demand. Only 33.3% of the health unit professionals agreed that these occurrences should be attended in the primary healthcare services. The limited viewpoint of the role of health services on the unscheduled care, particularly among primary care professionals, possibly leads to restrictive practices for access by the population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to transmit and amplify weak signals is fundamental to signal processing of artificial devices in engineering. Using a multilayer feedforward network of coupled double-well oscillators as well as Fitzhugh-Nagumo oscillators, we here investigate the conditions under which a weak signal received by the first layer can be transmitted through the network with or without amplitude attenuation. We find that the coupling strength and the nodes' states of the first layer act as two-state switches, which determine whether the transmission is significantly enhanced or exponentially decreased. We hope this finding is useful for designing artificial signal amplifiers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.