950 resultados para Computational fluid dynamics modeling
Resumo:
An anomalously long transient is needed to achieve a steady pressurization of a fluid when forced to flow through micronarrowed channels under constant mechanical driving. This phenomenon, known as the "bottleneck effect" is here revisited from a different perspective, by using confined displacements of interfacial fluids. Compared to standard microfluidics, such effect admits in this case a neat quantitative characterization, which reveals intrinsic material characteristics of flowing monolayers and permits to envisage strategies for their controlled micromanipulation.
Resumo:
We consider diffusion of a passive substance C in a phase-separating nonmiscible binary alloy under turbulent mixing. The substance is assumed to have different diffusion coefficients in the pure phases A and B, leading to a spatially and temporarily dependent diffusion ¿coefficient¿ in the diffusion equation plus convective term. In this paper we consider especially the effects of a turbulent flow field coupled to both the Cahn-Hilliard type evolution equation of the medium and the diffusion equation (both, therefore, supplemented by a convective term). It is shown that the formerly observed prolonged anomalous diffusion [H. Lehr, F. Sagués, and J.M. Sancho, Phys. Rev. E 54, 5028 (1996)] is no longer seen if a flow of sufficient intensity is supplied.
Resumo:
A two-dimensional reaction-diffusion front which propagates in a modulated medium is studied. The modulation consists of a spatial variation of the local front velocity in the transverse direction to that of the front propagation. We study analytically and numerically the final steady-state velocity and shape of the front, resulting from a nontrivial interplay between the local curvature effects and the global competition process between different maxima of the control parameter. The transient dynamics of the process is also studied numerically and analytically by means of singular perturbation techniques.
Resumo:
We study the problem of the advection of passive particles with inertia in a two-dimensional, synthetic, and stationary turbulent flow. The asymptotic analytical result and numerical simulations show the importance of inertial bias in collecting the particles preferentially in certain regions of the flow, depending on their density relative to that of the flow. We also study how these aggregates are affected when a simple chemical reaction mechanism is introduced through a Eulerian scheme. We find that inertia can be responsible for maintaining a stationary concentration pattern even under nonfavorable reactive conditions or destroying it under favorable ones.
Resumo:
We study particle dispersion advected by a synthetic turbulent flow from a Lagrangian perspective and focus on the two-particle and cluster dispersion by the flow. It has been recently reported that Richardson¿s law for the two-particle dispersion can stem from different dispersion mechanisms, and can be dominated by either diffusive or ballistic events. The nature of the Richardson dispersion depends on the parameters of our flow and is discussed in terms of the values of a persistence parameter expressing the relative importance of the two above-mentioned mechanisms. We support this analysis by studying the distribution of interparticle distances, the relative velocity correlation functions, as well as the relative trajectories.
Resumo:
We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.
Resumo:
Using the experimental data of Paret and Tabeling [Phys. Rev. Lett. 79, 4162 (1997)] we consider in detail the dispersion of particle pairs by a two-dimensional turbulent flow and its relation to the kinematic properties of the velocity field. We show that the mean square separation of a pair of particles is governed by rather rare, extreme events and that the majority of initially close pairs are not dispersed by the flow. Another manifestation of the same effect is the fact that the dispersion of an initially dense cluster is not the result of homogeneously spreading the particles within the whole system. Instead it proceeds through a splitting into smaller but also dense clusters. The statistical nature of this effect is discussed.
Resumo:
A model of a phase-separating two-component Langmuir monolayer in the presence of a photoinduced reaction interconverting two components is formulated. An interplay between phase separation, orientational ordering, and reaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling stripes, wave sources, and vortex defects.
Resumo:
Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media.
Resumo:
Velocity has been measured as a function of time for propagating crack tips as water is injected into solutions of end-capped associating polymers in a rectanguar Hele-Shaw cell. Measurements were performed for flows with different values of cell gap, channel width, polymer molecular weight, and polymer concentration. The condition for the onset of fracturelike behavior is well described by a Deborah number which uses the shear-thinning shear rate of the polymer solution as a characteristic frequency for network relaxation. At low molecular weight, the onset of fracturelike pattern evolution is accompanied by an abrupt jump in tip velocity, followed by a lower and approximately constant acceleration. At high molecular weight, the transition to fracturelike behavior involves passing through a regime that may be understood in terms of stick-slip dynamics. The crack-tip wanders from side to side and fluctuates (in both speed and velocity along the channel) with a characteristic frequency which depends linearly on the invading fluid injection rate.
Resumo:
We study fracturelike flow instabilities that arise when water is injected into a Hele-Shaw cell filled with aqueous solutions of associating polymers. We explore various polymer architectures, molecular weights, and solution concentrations. Simultaneous measurements of the finger tip velocity and of the pressure at the injection point allow us to describe the dynamics of the finger in terms of the finger mobility, which relates the velocity to the pressure gradient. The flow discontinuities, characterized by jumps in the finger tip velocity, which are observed in experiments with some of the polymer solutions, can be modeled by using a nonmonotonic dependence between a characteristic shear stress and the shear rate at the tip of the finger. A simple model, which is based on a viscosity function containing both a Newtonian and a non-Newtonian component, and which predicts nonmonotonic regions when the non-Newtonian component of the viscosity dominates, is shown to agree with the experimental data.
Resumo:
The oxidation of solutions of glucose with methylene-blue as a catalyst in basic media can induce hydrodynamic overturning instabilities, termed chemoconvection in recognition of their similarity to convective instabilities. The phenomenon is due to gluconic acid, the marginally dense product of the reaction, which gradually builds an unstable density profile. Experiments indicate that dominant pattern wavenumbers initially increase before gradually decreasing or can even oscillate for long times. Here, we perform a weakly nonlinear analysis for an established model of the system with simple kinetics, and show that the resulting amplitude equation is analogous to that obtained in convection with insulating walls. We show that the amplitude description predicts that dominant pattern wavenumbers should decrease in the long term, but does not reproduce the aforementioned increasing wavenumber behavior in the initial stages of pattern development. We hypothesize that this is due to horizontally homogeneous steady states not being attained before pattern onset. We show that the behavior can be explained using a combination of pseudo-steady-state linear and steady-state weakly nonlinear theories. The results obtained are in qualitative agreement with the analysis of experiments.
Resumo:
In thin-layer electrodeposition the dissipated electrical energy leads to a substantial heating of the ion solution. We measured the resulting temperature field by means of an infrared camera. The properties of the temperature field correspond closely with the development of the concentration field. In particular, we find that the thermal gradients at the electrodes act similar to a weak additional driving force to the convection rolls driven by concentration gradients.
Resumo:
We observe dendritic patterns in fluid flow in an anisotropic Hele-Shaw cell and measure the tip shapes and trajectories of individual dendritic branches under conditions where the pattern growth appears to be dominated by surface tension anisotropy and also under conditions where kinetic effects appear dominant. In each case, the tip position depends on a power law in the time, but the exponent of this power law can vary significantly among flow realizations. Averaging many growth exponents a yields a =0.640.09 in the surface tension dominated regime and a =0.660.09 in the kinetic regime. Restricting the analysis to realizations when a is very close to 0.6 shows great regularity across pattern regimes in the coefficient of the temporal dependence of the tip trajectory.
Resumo:
We examine the patterns formed by injecting nitrogen gas into the center of a horizontal, radial Hele-Shaw cell filled with paraffin oil. We use smooth plates and etched plates with lattices having different amounts of defects (010 %). In all cases, a quantitative measure of the pattern ramification shows a regular trend with injection rate and cell gap, such that the dimensionless perimeter scales with the dimensionless time. By adding defects to the lattice, we observe increased branching in the pattern morphologies. However, even in this case, the scaling behavior persists. Only the prefactor of the scaling function shows a dependence on the defect density. For different lattice defect densities, we examine the nature of the different morphology phases.