945 resultados para Complex variable theory
Resumo:
Spectral changes of Na(2) in liquid helium were studied using the sequential Monte Carlo-quantum mechanics method. Configurations composed by Na(2) surrounded by explicit helium atoms sampled from the Monte Carlo simulation were submitted to time-dependent density-functional theory calculations of the electronic absorption spectrum using different functionals. Attention is given to both line shift and line broadening. The Perdew, Burke, and Ernzerhof (PBE1PBE, also known as PBE0) functional, with the PBE1PBE/6-311++G(2d,2p) basis set, gives the spectral shift, compared to gas phase, of 500 cm(-1) for the allowed X (1)Sigma(+)(g) -> B (1)Pi(u) transition, in very good agreement with the experimental value (700 cm(-1)). For comparison, cluster calculations were also performed and the first X (1)Sigma(+)(g) -> A (1)Sigma(+)(u) transition was also considered.
Resumo:
We report cross sections for elastic collisions of low-energy electrons with the CH(2)O-H(2)O complex. We employed the Schwinger multichannel method with pseudopotentials in the static-exchange and in the static-exchange-polarization approximations for energies from 0.1 to 20 eV. We considered four different hydrogen-bonded structures for the complex that were generated by classical Monte Carlo simulations. Our aim is to investigate the effect of the water molecule on the pi* shape resonance of formaldehyde. Previous studies reported a pi* shape resonance for CH(2)O at around 1 eV. The resonance positions of the complexes appear at lower energies in all cases due to the mutual polarization between the two molecules. This indicates that the presence of water may favor dissociation by electron impact and may lead to an important effect on strand breaking in wet DNA by electron impact.
Resumo:
In the last decade the Sznajd model has been successfully employed in modeling some properties and scale features of both proportional and majority elections. We propose a version of the Sznajd model with a generalized bounded confidence rule-a rule that limits the convincing capability of agents and that is essential to allow coexistence of opinions in the stationary state. With an appropriate choice of parameters it can be reduced to previous models. We solved this model both in a mean-field approach (for an arbitrary number of opinions) and numerically in a Barabaacutesi-Albert network (for three and four opinions), studying the transient and the possible stationary states. We built the phase portrait for the special cases of three and four opinions, defining the attractors and their basins of attraction. Through this analysis, we were able to understand and explain discrepancies between mean-field and simulation results obtained in previous works for the usual Sznajd model with bounded confidence and three opinions. Both the dynamical system approach and our generalized bounded confidence rule are quite general and we think it can be useful to the understanding of other similar models.
Resumo:
We present Monte Carlo simulations for a molecular motor system found in virtually all eukaryotic cells, the acto-myosin motor system, composed of a group of organic macromolecules. Cell motors were mapped to an Ising-like model, where the interaction field is transmitted through a tropomyosin polymer chain. The presence of Ca(2+) induces tropomyosin to block or unblock binding sites of the myosin motor leading to its activation or deactivation. We used the Metropolis algorithm to find the transient and the equilibrium states of the acto-myosin system composed of solvent, actin, tropomyosin, troponin, Ca(2+), and myosin-S1 at a given temperature, including the spatial configuration of tropomyosin on the actin filament surface. Our model describes the short- and long-range cooperativity during actin-myosin binding which emerges from the bending stiffness of the tropomyosin complex. We found all transition rates between the states only using the interaction energy of the constituents. The agreement between our model and experimental data also supports the recent theory of flexible tropomyosin.
Resumo:
The existence of a special periodic window in the two-dimensional parameter space of an experimental Chua's circuit is reported. One of the main reasons that makes such a window special is that the observation of one implies that other similar periodic windows must exist for other parameter values. However, such a window has never been experimentally observed, since its size in parameter space decreases exponentially with the period of the periodic attractor. This property imposes clear limitations for its experimental detection.
Resumo:
Using the superfield formalism, we study the dynamical breaking of gauge symmetry and super-conformal invariance in the N = 1 three-dimensional supersymmetric Chern-Simons model, coupled to a complex scalar superfield with a quartic self-coupling. This is an analogue of the conformally invariant Coleman-Weinberg model in four spacetime dimensions. We show that a mass for the gauge and matter superfields are dynamically generated after two-loop corrections to the effective superpotential. We also discuss the N = 2 extension of our work, showing that the Coleman-Weinberg mechanism in such model is not feasible, because it is incompatible with perturbation theory.
Resumo:
We study the one-loop low-energy effective action for the higher-derivative superfield gauge theory coupled to chiral matter.
Resumo:
The Jensen theorem is used to derive inequalities for semiclassical tunneling probabilities for systems involving several degrees of freedom. These Jensen inequalities are used to discuss several aspects of sub-barrier heavy-ion fusion reactions. The inequality hinges on general convexity properties of the tunneling coefficient calculated with the classical action in the classically forbidden region.
Resumo:
We propose a field theory model for dark energy and dark matter in interaction. Comparing the classical solutions of the field equations with the observations of the CMB shift parameter, baryonic acoustic oscillations, lookback time, and the Gold supernovae sample, we observe a possible interaction between dark sectors with energy decay from dark energy into dark matter. The observed interaction provides an alleviation to the coincidence problem.
Resumo:
The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular, random matrix theory (RMT) concepts have proven to be useful. In discussing transition from regular behavior to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the present paper we analyze the regular to chaotic behavior of small world (SW) networks using an extension of the Gaussian orthogonal ensemble. This RMT ensemble, coined the deformed Gaussian orthogonal ensemble (DGOE), supplies a natural foundation of the Brody formula. SW networks follow GOE statistics until a certain range of eigenvalue correlations depending upon the strength of random connections. We show that for these regimes of SW networks where spectral correlations do not follow GOE beyond a certain range, DGOE statistics models the correlations very well. The analysis performed in this paper proves the utility of the DGOE in network physics, as much as it has been useful in other physical systems.
Resumo:
The nuclear gross theory, originally formulated by Takahashi and Yamada (1969 Prog. Theor. Phys. 41 1470) for the beta-decay, is applied to the electronic-neutrino nucleus reactions, employing a more realistic description of the energetics of the Gamow-Teller resonances. The model parameters are gauged from the most recent experimental data, both for beta(-)-decay and electron capture, separately for even-even, even-odd, odd-odd and odd-even nuclei. The numerical estimates for neutrino-nucleus cross-sections agree fairly well with previous evaluations done within the framework of microscopic models. The formalism presented here can be extended to the heavy nuclei mass region, where weak processes are quite relevant, which is of astrophysical interest because of its applications in supernova explosive nucleosynthesis.
Resumo:
Within the superfield approach, we prove the absence of UV/IR mixing in the three-dimensional noncommutative supersymmetric Maxwell-Chern-Simons theory at any loop order and demonstrate its finiteness in one, three, and higher loop orders.
Resumo:
We prove a Goldstone theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of spacelike decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3526961]
Resumo:
Second harmonic generation is strictly forbidden in centrosymmetric materials, within the electric dipole approximation. Recently, it was found that the centrosymmetric magnetic semiconductors EuTe and EuSe can generate near-gap second harmonics, if the system is submitted to an external magnetic field. Here, a theoretical model is presented, which well describes the observed phenomena. The model shows that second harmonic generation becomes efficient when the magnetic dipole oscillations between the band-edge excited states of the system, induced by the excitation light, enter the in-phase regime, which can be achieved by applying a magnetic field to the material.
Resumo:
We show that the ground state of zigzag bilayer graphene nanoribbons is nonmagnetic. It also possesses a finite gap, which has a nonmonotonic dependence with the width as a consequence of the competition between bulk and strongly attractive edge interactions. All results were obtained using ab initio total-energy density functional theory calculations with the inclusion of parametrized van der Waals interactions.