1000 resultados para Coffee plant
Resumo:
Introduction of the recombinant cosmid pME3090 into Pseudomonas fluorescens strain CHAO, a good biocontrol agent of various diseases caused by soilborne pathogens, increased three- to five-fold the production of the antibiotic metabolites pyoluteorin (Pit) and 2,4-diacetylphlorogIucinol (Phi) in vitro. Strain CHAO/pME3090 also overproduced Pit and Phi in the rhizosphere of wheat infected or not infected with Pythium ultimum. The biocontrol activity of the wild-type and recombinant Straitis was compared using various plant pathogen-host combinations in a gnotobiotic system. Antibiotic overproduction affected neither the protection of wheat against P. ultimum and Gaeumannomyces graminis var. tritici nor the growth of wheat plants. In contrast, strain CHA0/pME3090 showed an increased capacity to protect cucumber against Fusarium oxysporum f. sp. cucumerinum and Phomopsis sclerotioides, compared with the wild-type strain CHAO, The antibiotic overproducing strain protected tobacco roots significantly better against Thielaviopsis basicola than the wild-type strain but drastically reduced the growth of tobacco plants and was also toxic to the growth of sweet com. On King's B agar and on malt agar, the recombinant strain CHA0/pME3090 inhibited all pathogens more than did the parental strain CHAO. Synthetic Pit and Phi were toxic to all fungi tested. Tobacco and sweet com were more sensitive to synthetic Pit and Phi than were cucumber and wheat. There was no correlation between the sensitivity of the pathogens to the synthetic antibiotics and the degree of disease suppression by strain CHAO pME3090. However, there was a correlation between the sensitivity of the plants and the toxicity of the recombinant strain. We conclude that the plant species rather than the pathogen determines whether cosmid pME3090 in P. fluorescens strain CHAO leads to improved disease suppression.
Resumo:
The potential ecological impact of ongoing climate change has been much discussed. High mountain ecosystems were identified early on as potentially very sensitive areas. Scenarios of upward species movement and vegetation shift are commonly discussed in the literature. Mountains being characteristically conic in shape, impact scenarios usually assume that a smaller surface area will be available as species move up. However, as the frequency distribution of additional physiographic factors (e.g., slope angle) changes with increasing elevation (e.g., with few gentle slopes available at higher elevation), species migrating upslope may encounter increasingly unsuitable conditions. As a result, many species could suffer severe reduction of their habitat surface, which could in turn affect patterns of biodiversity. In this paper, results from static plant distribution modeling are used to derive climate change impact scenarios in a high mountain environment. Models are adjusted with presence/absence of species. Environmental predictors used are: annual mean air temperature, slope, indices of topographic position, geology, rock cover, modeled permafrost and several indices of solar radiation and snow cover duration. Potential Habitat Distribution maps were drawn for 62 higher plant species, from which three separate climate change impact scenarios were derived. These scenarios show a great range of response, depending on the species and the degree of warming. Alpine species would be at greatest risk of local extinction, whereas species with a large elevation range would run the lowest risk. Limitations of the models and scenarios are further discussed.
Resumo:
Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity-ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness. Functional diversity was a reliable predictor for most biota, with the exception of soil microorganisms, which were better predicted by phylogenetic diversity. These results provide empirical support for the idea that the diversity of plant functional traits and the diversity of evolutionary lineages in a community are important for maintaining higher abundances and diversity of soil communities.
Resumo:
We investigated the ecogeographic characteristics of 118 Swiss plant species listed as those deserving highest conservation priority in a national conservation guide and classified them into the seven Rabinowitz' rarity types, taking geographic distribution, habitat rarity and local population size into account. Our analysis revealed that species with high conservation priority in Switzerland mostly have a very restricted geographic distribution in Switzerland and generally occur in rare habitats, but do not necessarily constitute small populations and are generally not endemics on a global scale. Moreover, species that are geographically very restricted on a regional scale are not generally restricted on a global scale. By analysing relationships between rarity and IUCN extinction risks for Switzerland, we demonstrated that species with the highest risk of extinction are those with the most restricted geographic distribution; whereas species with lower risk of extinction (but still high conservation priority) include many regional endemics. Habitat rarity and local population size appeared to be of minor importance for the assessment of extinction risk in Switzerland, but the total number of fulfilled rarity criteria still correlated positively with the severity of extinction risk. Our classification is the first preliminary assessment of the relative importance of each rarity type among endangered plant species of the Swiss flora and our results underline the need to distinguish between a regional and a global responsibility for the conservation of rare and endangered species.
Resumo:
Phosphorus fertilization and irrigation increase coffee production, but little is known about the effect of these practices on soil organic matter and soil microbiota in the Cerrado. The objective of this study was to evaluate the microbiological and oxidizable organic carbon fractions of a dystrophic Red Latossol under coffee and split phosphorus (P) applications and different irrigation regimes. The experiment was arranged in a randomized block design in a 3 x 2 factorial design with three split P applications (P1: 300 kg ha-1 P2O5, recommended for the crop year, of which two thirds were applied in September and the third part in December; P2: 600 kg ha-1 P2O5, applied at planting and then every two years, and P3: 1,800 kg ha-1 P2O5, the requirement for six years, applied at once at planting), two irrigation regimes (rainfed and year-round irrigation), with three replications. The layers 0-5 and 5-10 cm were sampled to determine microbial biomass carbon (MBC), basal respiration (BR), enzyme activity of acid phosphatase, the oxidizable organic carbon fractions (F1, F2, F3, and F4), and total organic carbon (TOC). The irrigation regimes increased the levels of MBC, microbial activity and acid phosphatase, TOC and oxidizable fractions of soil organic matter under coffee. In general, the form of dividing P had little influence on the soil microbial properties and OC. Only P3 under irrigation increased the levels of MBC and acid phosphatase activity.
Resumo:
The response of sugarcane to application of micronutrients is still not very well known. In view of the need for this information, the aim of this study was to evaluate the application of the micronutrients Zn, Cu, Mn, Fe, B, and Mo to plant cane in three soils, with and without application of filter cake. This study consisted of three experiments performed in the State of São Paulo, Brazil, (in Igaraçu do Tiete, on an Oxisol; in Santa Maria da Serra, on an Entisol, both in the 2008/2009 growing season; and in Mirassol, on an Ultisol, in the 2009/2010 growing season) in a randomized block design with four replications with a 8 x 2 factorial combination of micronutrients (1 - no application/control, 2 - addition of Zn, 3 - addition of Cu, 4 - addition of Mn 5 - addition of Fe, 6 - addition of B, 7 - addition of Mo, 8 - Addition of Zn, Cu, Mn, Fe, B, and Mo) and filter cake (0 and 30 t ha-1 of filter cake) in the furrow at planting. The application of filter cake was more efficient than of Borax in raising leaf B concentration to sufficiency levels for sugarcane in the Entisol, and it increased mean stalk yield in the Oxisol. In areas without filter cake application, leaf concentrations were not affected by the application of Zn, Cu, Mn, Fe, B, and Mo in the furrow at planting; however, Zn and B induced an increase in stalk and sugar yield in micronutrient-poor sandy soil.
Resumo:
Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps. Methods Using the quadratic diversity measure based on six functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), leaf carbon content (C), leaf nitrogen content (N), and leaf carbon to nitrogen content (C/N) alongside a species-resolved phylogenetic tree, we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps. Important findings Our study highlights two main points. First, climate and land use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land use factors in plant functional and phylogenetic community turnover, and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.
Resumo:
Variable-rate nitrogen fertilization (VRF) based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE) and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF) used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N) content, N uptake, relative chlorophyll content (SPAD) reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001), total N uptake (R² = 0.87; p<0.0001) and SPAD reading (R² = 0.63; p<0.0001) and inversely related to plant N content (R² = 0.53; p<0.0001). The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.
Resumo:
Selostus: Timoteilajikkeiden sadot, kasvuominaisuudet sekä typpi- ja kuitupitoisuus kahdella leveysasteella
Resumo:
In modern agriculture, several factors cause changes in the soil physical properties. The time of establishment of a crop (plantation age) and the slope are examples of factors that moderate the impact of mechanized operations on the soil structure. The objective of this study was to analyze the effect of machinery traffic on the physical properties of a Red-Yellow Latosol under coffee plantations with different ages (2, 7, 18, and 33 years) and slope positions (3, 9 and 15 %). Samples were collected from three positions between coffee rows (lower wheel track, inter-row and upper wheel track) and at two depths (surface layer and sub-surface). Changes in the total porosity, macroporosity, microporosity, organic matter, bulk density, and aggregate stability were investigated. Our results showed that the slope influenced the organic matter content, microporosity and aggregate stability. The soil samples under the inter-row were minimally damaged in their structure, compared to those from under the lower and upper wheel track, while the structure was better preserved under the lower than the upper track. The time since the establishment of the crop, i.e., the plantation age, was the main factor determining the extent of structural degradation in the coffee plantation.
Resumo:
The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of biotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs) on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models (SDMs), we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.
Dry matter and macronutrient accumulation in fruits of Conilon coffee with different ripening cycles
Resumo:
The period between anthesis and fruit ripening varies according to the Conilon coffee (Coffea canephora) genotype. Therefore, the time of the nutritional requirements for fruit formation may differ, depending on the formation phase and the genotype, and may directly affect split application of fertilizer. The aim of this study was to quantify the accumulation of dry matter and N, P, K, Ca, Mg and S at several stages in the fruit of the Conilon coffee genotype with different ripening cycles, which may suggest the need for split application of fertilizer in coffee. The experiment was carried out in the municipality of Nova Venecia, Espírito Santo, Brazil, throughout the reproductive cycle. The treatments were composed of four coffee genotypes with different ripening cycles. A completely randomised experimental design was used. with five replicates. Plagiotropic branches were harvested from flowering to fruit ripening at 28-day intervals to determine the dry matter of the fruits and the concentration and accumulation of the nutrients they contained. The behavior of dry matter and macronutrient accumulation during the study period was similar and increasing, but it differed among genotypes sampled in the same season. Early genotypes exhibited a higher speed of dry matter and nutrient accumulation. Split application of fertilizer should differ among coffee genotypes with different ripening cycles (early, intermediate, late and very late).
Resumo:
Selostus: Kasvien sopeutuminen lämpötilaan ja päivän pituuteen
Resumo:
Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.