972 resultados para Coffee by-products
Resumo:
This research was conducted to study the use of radiation in water treatment as an alternative to chlorination which has caused health concerns due to the formation of harmful disinfection by-products. Groundwater solutions from the Biscayne aquifer were radiated with Cobalt-60 gamma radiation and studied for changes in dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), fluorescence and trihalomethane formation potential (THMFP). Molecular fractionations were conducted by ultrafiltration. Effect of the combination of radiation/peroxide was studied for DOC and UV254. Radiation showed significant removal in DOC and THMFP. Similar results were seen in the fluorescence and UV absorbance experiments. Radiation/peroxide did not improve the DOC removal. Radiation of the groundwater samples broke the larger molecular weight fractions in to smaller fractions.
Resumo:
Bien que l’os soit une matière première ayant joué un rôle essentiel au sein des activités quotidiennes des Iroquoiens du Saint-Laurent, il existe à ce jour très peu d’analyses systématiques de l’outillage en os et des débris de fabrication retrouvés en Iroquoianie. Afin de pallier ces lacunes, ce mémoire de maitrise porte sur l’analyse des vestiges en os ouvragés récupérés sur le site villageois Mailhot-Curran (BgFn-2), occupé durant le Sylvicole supérieur tardif par une communauté iroquoienne du Saint-Laurent. Plus précisément, l’étude consiste à analyser l’industrie osseuse en portant une attention particulière aux déchets de fabrication. Cet examen attentif a pour principal objectif de documenter les modes de gestion et de sélection de la matière première ainsi que d’améliorer la compréhension des techniques préhistoriques employées pour la fabrication des objets en os. Au moyen d’analyses technologiques, zooarchéologiques et tracéologiques, il sera possible de classifier les déchets de fabrication, de documenter leur origine technologique et, ultimement, de reconstituer un certain nombre de chaines opératoires. Une étude détaillée de la distribution spatiale des artéfacts permettra également de mieux comprendre l’organisation des activités dans l’espace villageois. Ce mémoire a aussi pour objectif de fournir des balises méthodologiques et empiriques relatives à l’étude des déchets de fabrications en os, afin de démontrer la pertinence de considérer ces derniers dans la compréhension des systèmes socioéconomiques et culturels.
Resumo:
Increasing food production to feed its rapidly growing population is a major policy goal of Pakistan. The production of traditional staples such as rice (Oryza sativa L.) and bread wheat (Triticum aestivum L.) has been intensified in many regions, but not in remote, drought-ridden areas. In these arid, marginal environments dates and their by-products are an option to complement staples given their high nutritive value and storability. To fill knowledge gaps about the role of date palm in the household (HH) income of rural communities and the structure of date value chains, this project studied date palm production across six districts in four provinces of Pakistan. During 2012–2013 a total of 170 HHs were interviewed with a structured questionnaire using a snowball sampling approach. The results showed that most of the HH were headed by males (99 %) who were married (74 %) and often illiterate (40 %). Agriculture was the main occupation of date palm growers (56 %), while a few coupled agricultural activities with business (17 %) or extra-farm employment opportunities (government 9 %; private sector 8 %). Date sales contributed >50 % to the total income of 39 % of HH and 90–100 % to 24 % of HH. Overall farmers grew a total of 39 date palm cultivars and cultivated an average of 409 ± 559 mature date palms. The majority of the respondents sold dates to commission agents (35 %), contractors (22 %) and wholesalers (21 %), while 28 % of HH cultivated date palms only for self-consumption. Date palm growers had only limited knowledge about high quality date cultivars, optimized farm management and about effective post-harvest conservation. Changes in extension and marketing efforts are needed to allow farmers to better exploit value chains in date thereby reaping higher benefits from improved market access to secure their often marginal income.
Resumo:
L'industrie du ciment est l'une des principales sources d'émission de dioxyde de carbone. L'industrie mondiale du ciment contribue à environ 7% des émissions de gaz à effet de serre dans l'atmosphère. Afin d'aborder les effets environnementaux associés à la fabrication de ciment exploitant en permanence les ressources naturelles, il est nécessaire de développer des liants alternatifs pour fabriquer du béton durable. Ainsi, de nombreux sous-produits industriels ont été utilisés pour remplacer partiellement le ciment dans le béton afin de générer plus d'économie et de durabilité. La performance d'un additif de ciment est dans la cinétique d'hydratation et de la synergie entre les additions et de ciment Portland. Dans ce projet, deux sous-produits industriels sont étudiés comme des matériaux cimentaires alternatifs: le résidu de silice amorphe (RSA) et les cendres des boues de désencrage. Le RSA est un sous-produit de la production de magnésium provenant de l'Alliance Magnésium des villes d'Asbestos et Thedford Mines, et les cendres des boues de désencrage est un sous-produit de la combustion des boues de désencrage, l'écorce et les résidus de bois dans le système à lit fluidisé de l'usine de Brompton située près de Sherbrooke, Québec, Canada. Récemment, les cendres des boues de désencrage ont été utilisées comme des matériaux cimentaires alternatifs. L'utilisation de ces cendres comme matériau cimentaire dans la fabrication du béton conduit à réduire la qualité des bétons. Ces problèmes sont causés par des produits d'hydratation perturbateurs des cendres volantes de la biomasse quand ces cendres sont partiellement mélangées avec du ciment dans la fabrication du béton. Le processus de pré-mouillage de la cendre de boue de désencrage avant la fabrication du béton réduit les produits d'hydratation perturbateurs et par conséquent les propriétés mécaniques du béton sont améliorées. Les approches pour étudier la cendre de boue de désencrage dans ce projet sont : 1) caractérisation de cette cendre volante régulière et pré-humidifiée, 2) l'étude de la performance du mortier et du béton incorporant cette cendre volante régulière et pré-humidifiée. Le RSA est un nouveau sous-produit industriel. La haute teneur en silice amorphe en RSA est un excellent potentiel en tant que matériau cimentaire dans le béton. Dans ce projet, l'évaluation des RSA comme matériaux cimentaires alternatifs compose trois étapes. Tout d'abord, la caractérisation par la détermination des propriétés minéralogiques, physiques et chimiques des RSA, ensuite, l'optimisation du taux de remplacement du ciment par le RSA dans le mortier, et enfin l'évaluation du RSA en remplacement partiel du ciment dans différents types de béton dans le système binaire et ternaire. Cette étude a révélé que le béton de haute performance (BHP) incorporant le RSA a montré des propriétés mécaniques et la durabilité, similaire du contrôle. Le RSA a amélioré les propriétés des mécaniques et la durabilité du béton ordinaire (BO). Le béton autoplaçant (BAP) incorporant le RSA est stable, homogène et a montré de bonnes propriétés mécaniques et la durabilité. Le RSA avait une bonne synergie en combinaison de liant ternaire avec d'autres matériaux cimentaires supplémentaires. Cette étude a montré que le RSA peut être utilisé comme nouveaux matériaux cimentaires dans le béton.
Resumo:
The production of olive oil generates several by-products that can be seen as an additional business opportunity. Among them are the olive pits, already used for heat and/or electricity generation in some mills. They contain compounds that are commercially very interesting and, if recovered, contribute to the sustainability of the olive mills. The work presented in this paper is a preliminary evaluation of the economic feasibility of implementing a system based on a batch prototype with 1 m3 for the extraction of high value-added bioactive molecules from olive pits that are separated during the production of virgin olive oil. For the analysis, a small representative olive mill in Portugal was considered and the traditional Discounted Cash Flow Method was applied. Based on the assumptions made, the simple payback for implementation a system for the extraction of value-added molecules from the olive pits is around 7 years.
Resumo:
This study presents for the first time the diet of a Late Antiquity population in southern Portugal (Civitas of Pax Julia), from the Roman villa of Monte da Cegonha (predominantly 7th century CE). Stable isotope analysis (δ13C, δ15N, δ18O, 87Sr/86Sr) of human and faunal bone collagen and apatite was conducted in order to understand the influence of Roman subsistence strategies on the way of life of rural inhabitants of the area of Pax Julia and to explore their diet (types of ingested plants, amount of animal resources, terrestrial versus marine resources). X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FTIR) analyses were used to determine the degree of bone diagenesis and assess the reliability of the bone stable isotopic composition for palaeodietary reconstruction. Anthropological analysis revealed a cariogenic diet, rich in starchy food and carbohydrates, in at least in two individuals based on the frequency of dental caries. Collagen and apatite carbon isotopic analysis suggested that C3 plants were the basis of the population's diet, complemented with some terrestrial meat and its by-products as reflected by the observed bone collagen nitrogen isotopic composition. Moreover, whilst the fairly low apatite-collagen spacing recorded in some skeletons (at around 4‰) may have been due to freshwater organisms intake, the relatively low nitrogen values observed indicate that this consumption did not occur very often, unless in the form of fresh fish of low trophic level or fish sauces. There were no significant differences in isotopic values depending on gender or burial type. Strontium and oxygen isotopic composition of bone apatite revealed a sedentary community, with the exception of a male individual who probably did not spend his childhood in Monte da Cegonha.
Resumo:
The electrochemical conversion is a sustainable way for the production of added-value products, operating in mild conditions, using in-situ generated hydrogen/oxygen by water and avoiding the use of high H2/O2 pressures. The aim of this work is to investigate the electrocatalytic conversion of 5-hydroxymetilfurfural (HMF) and D-glucose, in alkaline media, using metallic open-cell foams based-catalysts. The electrochemical hydrogenation of HMF to 2,5-bis(hydroxymethyl)furan (BHMF) was performed using nanostructured Ag, deposited by galvanic displacement (GD) or electrodeposition (ED), on Cu foam, obtaining AgCu bimetallic nanoparticles (ED) or dendrites (GD) which enhanced electroactive surface area, charge and mass transfer, than bare foams. In diluted 0.02M HMF solutions, Ag/Cu samples selectively produce BHMF; the large surface area enhanced the productivity, compared to their 2D counterparts. Furthermore, at more concentrated solutions (0.05 – 0.10M) a gradually decrease of selectivity is observed. The performances of the electrodes is stable during the catalytic tests but a Cu-enrichment of particles occurred. The performances of Ni foam-based catalysts, obtained by calcination of Ni foam or by electrodeposition of Ni-hydroxide/Ni and Ni particle/Ni, were firstly investigated for the selective electrochemical oxidation of D-glucose toward gluconic acid (GO) and glucaric acid (GA). Then, the calcined catalyst was chosen to study the influence of the reaction conditions on the reaction mechanism. The GO and GA selectivities increase with the charge passed, while the formation of by-products from C-C cleavage/retro-aldol process is maximum at low charge. The fructose obtained from glucose isomerization favours the formation of by-products. The best glucose/NaOH ratio is between 0.5 and 0.1: higher values suppress the OER, while lower values favour the formation of low molecular weight products. The increases of the potential enhance the GO selectivity, nevertheless higher GA selectivity is observed at 0.6 – 0.7V vs SCE, confirmed by catalytic test performed in gluconate (30-35% GA selectivity).
Resumo:
A relevant problem of polyolefins processing is the presence of volatile and semi-volatile compounds (VOCs and SVOCs) such as linear chains alkanes found out in final products. These VOCs can be detected by customers from the unpleasant smelt and can be an environmental issue, at the same time they can cause negative side effects during process. Since no previously standardized analytical techniques for polymeric matrix are available in bibliography, we have implemented different VOCs extraction methods and gaschromatographic analysis for quali-quantitative studies of such compounds. In literature different procedures can be found including microwave extraction (MAE) and thermo desorption (TDS) used with different purposes. TDS coupled with GC-MS are necessary for the identification of different compounds in the polymer matrix. Although the quantitative determination is complex, the results obtained from TDS/GC-MS show that by-products are mainly linear chains oligomers with even number of carbon in a C8-C22 range (for HDPE). In order to quantify these linear alkanes by-products, a more accurate GC-FID determination with internal standard has been run on MAE extracts. Regardless the type of extruder used, it is difficult to distinguish the effect of the various processes, which in any case entails having a lower-boiling substance content, lower than the corresponding virgin polymer. The two HDPEs studied can be distinguished on the basis of the quantity of analytes found, therefore the production process is mainly responsible for the amount of VOCs and SVOCs observed. The extruder technology used by Sacmi SC allows to obtain a significant reduction in VOCs compared to the conventional screw system. Thus, the result is significantly important as a lower quantity of volatile substances certainly leads to a lower migration of such materials, especially when used for food packaging.
Resumo:
Waste management worldwide has received increasing attention from global policies in recent years. In particular, agro-industrial streams represent a global concern due to the huge volumes generated and a high number of residues, which produce an environmental and economic impact on the ecosystem. The use of biotechnological approaches to treat these streams could allow the production of desirable by-products to be reinjected into the production cycle through sustainable processes. Purple phototrophic bacteria (PPB) are targeted as microorganisms capable to reduce the pressure of agro-industrial streams on environmental issues, due to their metabolic versatility (autotrophic and/or heterotrophic growth under different conditions). This Ph.D. research project aims to assess the effectiveness of PPB cultivation for industrial streams valorisation in the applications of biogas desulfurization and microbial protein production. For these purposes, the first part of the present work is dedicated to the cultivation of purple sulfur bacteria (PSB) for biogas streams upgrading, cleaning biogas from sulfur compounds (H2S), and producing elemental sulfur (S0), potentially suitable as a slow-release fertilizer. The second part of the thesis, instead, sees the application of purple non-sulfur bacteria (PNSB) on streams rich in organics, such as molasses, generating biomass with high content of proteins and pigments, useful as supplements in animal feed. The assessment of the main metabolic mechanisms involved in the two processes is evaluated at a laboratory scale using flasks and a photobioreactor, to define the consumption of substrates and the accumulation of products both in the autotrophic (on biogas) and in heterotrophic grow (on molasses). In conclusion, the effectiveness of processes employing PPB for a sustainable valorisation of several agro-industrial streams has been proved promising, using actual residues, and coupling their treatments with the production of added-value by-products.
Resumo:
The growing market of electrical cars, portable electronics, photovoltaic systems..etc. requires the development of efficient, low-cost, and low environmental impact energy storage devices (ESDs) including batteries and supercapacitors.. Due to their extended charge-discharge cycle, high specific capacitance, and power capabilities supercapacitors are considered among the most attractive ESDs. Over the last decade, research and development in supercapacitor technology have accelerated: thousands of articles have been published in the literature describing the electrochemical properties of the electrode materials and electrolyte in addition to separators and current collectors. Carbon-based supercapacitor electrodes materials have gained increasing attention due to their high specific surface area, good electrical conductivity, and excellent stability in harsh environments, as well as other characteristics. Recently, there has been a surge of interest in activated carbon derived from low-cost abundant sources such as biomass for supercapacitor electrode materials. Also, particular attention was given to a major challenging issue concerning the substitution of organic solutions currently used as electrolytes due to their highest electrochemical stability window even though their high cost, toxicity, and flammability. In this regard, the main objective of this thesis is to investigate the performances of supercapacitors using low cost abundant safe, and low environmental impact materials for electrodes and electrolytes. Several prototypes were constructed and tested using natural resources through optimization of the preparation of appropriate carbon electrodes using agriculture by-products waste or coal (i.e. Argan shell or Anthracite from Jerrada). Such electrodes were tested using several electrolyte formulations (aqueous and water in salt electrolytes) beneficing their non-flammability, lower cost, and environmental impact; the characteristics that provide a promising opportunity to design safer, inexpensive, and environmentally friendly devices compared to organic electrolytes.
Resumo:
As the word population continues to grow and global resources are limited, the WHO definition of health is difficult to achieve for a large part of the population. Humanity is facing the need to improve both environmental and human wellbeing. This can be done through careful planning and management of natural resources, ensuring food safety and reducing and converting wastes. This work aims to contribute to the improvement of population and environmental health exploring different research fields: urban park ecosystem services, food chemical risk assessment and agri-food by-product valorization. To highlight the importance of urban parks and their ecosystem services, an ethnobotanical study was carried out in the Ausa urban park in Rimini, using a citizen science approach. The results showed that Ausa Park is an important focal point for plant gatherers in Rimini, as it allows for plant foraging and contributes to preserve the knowledge of the use of plants. Two food safety studies were carried out, looking at the exposure of Poles to bisphenol A through the consumption of soft drinks and to cadmium through the consumption of chocolate bars. The results, compared with EFSA’s scientific opinion, show that the exposure of the Polish population to BPA is of health concern, while cadmium is not. In the agri-food by-product valorization, a green extraction method was optimized to recover valuable phenolic compounds from red-fleshed apple pomace; moreover, the possibility of recovering pectin from the residue was evaluated. Furthermore, valuable compounds in four different types of wheat milling by-products, considered as an alternative source of bioactive compounds with potential human health benefits, were investigated. In conclusion, this work produced usable data in urban green area management and planning, in food chemical risk assessment and in business production decisions, thus contributing to improving environmental and people wellbeing.
Resumo:
During my PhD we focused on different research projects concerning the synthesis and characterization of new rhodium carbonyl clusters. More specifically, we studied the reactivity between Rh4(CO)12 and different bidentate phosphines, obtaining seven different species: Rh4(CO)10(dppe), Rh4(CO)8(dppe)2, Rh4(CO)10(dppf), {Rh4(CO)10(dpp-hexane)}2, {Rh4(CO)10(t-dppe)}2, Rh2(CO)2(dppf)2 and Rh4(CO)9(μ2-dppe)(μ1-dppeO). The reactivity of [Rh7(CO)16]3- with [AuCl4]- and Au(Et2S)Cl led to the formation of seven bimetallic clusters, of which four new ones, namely [Rh16Au6(CO)36]6-, [Rh10Au(CO)26]3-, [Rh16Au6(CO)36]4-, [Rh16Au6(CO)36]5-, [Rh22Au3(CO)47]5-, [Rh19Au5(CO)40]4- and [Rh20Au7(CO)45]5-. The reactivity of [Rh16Au6(CO)36]6- and [Rh10Au(CO)26]3- was studied as well. The reactivity of [Rh7(CO)16]3- with AgBF4, AgNO3 and with Pt(Et2S)2Cl2 was investigated, yielding only to the already known [Rh6N(CO)15]-, [PtRh5(CO)15]- and [PtRh4(CO)14]2- compounds. [Rh7(CO)16]3- war reacted with SnCl2·2H2O in acetone obtaining [Rh7Sn4Cl10(CO)14]5-, and [Rh12Sn(CO)23Cl2]4- was reacted with H+ obtaining [Rh18Sn3Cl2(CO)44]4-. Reactivity of [Rh7(CO)16]3- with InCl3 resulted in the isolation of [Rh12In(CO)28]3- and [Rh11In3(CO)25Cl2]3-, already known in our research lab, and the new [HRh11In(CO)26]3-. Moreover, a more straightforward synthesis for [Rh6InCl3(CO)15]2- was found, and this also led to the isolation of the [Rh6InCl2(DMF)(CO)15]-. The recover or rhodium as valuable carbonyl compound was also studied, and starting from a mixture of by-products it was possible to obtain the starting material [Rh7(CO)16]3-.
Resumo:
Graphite is a mineral commodity used as anode for lithium-ion batteries (LIBs), and its global demand is doomed to increase significantly in the future due to the forecasted global market demand of electric vehicles. Currently, the graphite used to produce LIBs is a mix of synthetic and natural graphite. The first one is produced by the crystallization of petroleum by-products and the second comes from mining, which causes threats related to pollution, social acceptance, and health. This MSc work has the objective of determining compositional and textural characteristics of natural, synthetic, and recycled graphite by using SEM-EDS, XRF, XRD, and TEM analytical techniques and couple these data with dynamic Material Flow Analysis (MFA) models, which have the objective of predicting the future global use of graphite in order to test the hypothesis that natural graphite will no longer be used in the LIB market globally. The mineral analyses reveal that the synthetic graphite samples contain less impurities than the natural graphite, which has a rolled internal structure similar to the recycled one. However, recycled graphite shows fractures and discontinuities of the graphene layers caused by the recycling process, but its rolled internal structure can help the Li-ions’ migration through the fractures. Three dynamic MFA studies have been conducted to test distinct scenarios that include graphite recycling in the period 2022-2050 and it emerges that - irrespective of any considered scenario - there will be an increase of synthetic graphite demand, caused by the limited stocks of battery scrap available. Hence, I conclude that both natural and recycled graphite is doomed to be used in the LIB market in the future, at least until the year 2050 when the stock of recycled graphite production will be enough to supersede natural graphite. In addition, some new improvement in the dismantling and recycling processes are necessary to improve the quality of recycled graphite.
Resumo:
Plastic is an essential asset for the modern lifestyle, given its superiority as a material from the points of view of cost, processability and functional properties. However, plastic-related environmental pollution has become nowadays a very significant problem that can no longer be overlooked. For this reason, in recent decades, the research for new materials that could replace fossil fuel-based plastics has been focused on biopolymers with similar physicochemical properties to fossil fuel-based plastics, such as Polyhydroxyalkanoates (PHA). PHAs are a family of biodegradable polyesters synthesized by many microorganisms as carbon and energy reserves. PHA appears as a good candidate to substitute conventional petroleum-based plastics since it has similar properties, but with the advantage of being biobased and biodegradable, and has a wide range of applications (e.g., packaging). However, the PHA production cost is almost four times higher (€5/kg) than conventional plastic manufacturing. The PHA production by mixed microbial cultures (MMC) allows to reduce production costs as it does not require aseptic conditions and it enables the use of inexpensive by-products or waste streams as these cultures are more amenable to deal with complex feedstocks. Saline wastewaters (WWs), generated by several industries such as seafood, leather and dairy, are often rich in organic compounds and, due to a strong salt inhibition, the biological treatments are inefficient, and their disposal is expensive. These saline WWs are a potential feedstock for PHA production, as they are an inexpensive raw material. Moreover, saline WWs could allow the utilization of seawater in the process as dilution and cleaning agent, further decreasing the operational costs and the environmental burden of the process. The main goal of the current project is to assess and optimize the PHA production from a mixture of food waste and brine wastewater from the fishery industry by MMC.
Resumo:
Spent coffee grounds (SCG), which are the residue obtained from the treatment of coffee with hot water or steam, can be used for industrial applications, due to the high content in lipids. The cosmetic products might be a suitable application for these types of residues because the barrier properties of the stratum corneum (SC) are largely dependent on the intactness of the lipid lamellae that surrounds the corneocytes. The purpose of this work was to assess the feasibility of using the lipid fraction of SCG extracted with supercritical carbon dioxide in the development of new cosmetic formulations with improved skin lipids (sebum) and hydration. The use of spent coffee lipid extract in cosmetic industry seems to be a suitable approach to recycle the wastes from coffee industry. Emulsion containing 10% of the lipid fraction of SCG (SpentCofOil cream) presented promising characteristics in the improvement of sebum skin levels with a good acceptance by consumers when compared to an emulsion containing 10% w/w of green coffee oil (GreenCofOil cream) and a placebo without coffee oil (NoCofOil cream). Practical applications: In this work, the authors develop and characterize a cream containing 10% of the lipid fraction of SCG extracted with supercritical carbon dioxide with improved skin lipids (sebum) and hydration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.