998 resultados para Classificadores de classe única
Resumo:
Traditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria
Resumo:
In systems that combine the outputs of classification methods (combination systems), such as ensembles and multi-agent systems, one of the main constraints is that the base components (classifiers or agents) should be diverse among themselves. In other words, there is clearly no accuracy gain in a system that is composed of a set of identical base components. One way of increasing diversity is through the use of feature selection or data distribution methods in combination systems. In this work, an investigation of the impact of using data distribution methods among the components of combination systems will be performed. In this investigation, different methods of data distribution will be used and an analysis of the combination systems, using several different configurations, will be performed. As a result of this analysis, it is aimed to detect which combination systems are more suitable to use feature distribution among the components
Correlação entre a qualidade de vida, classe funcional e idade em portadores de marca-passo cardíaco
Resumo:
OBJETIVO: Avaliar se existe correlação entre qualidade de vida e classe funcional em pacientes no pós-implante de marca-passo cardíaco, e sua relação com idade. MÉTODOS: Investigados 107 pacientes de ambos os sexos (49,5% do sexo feminino e 50,5% do sexo masculino), tempo médio de implante 6,36º ±2,99 meses e média de idade 69,3º ±12,6 anos. Para avaliação da classe funcional, foi utilizada escala proposta por Goldman e para qualidade de vida, questionário AQUAREL associado ao SF-36. Realizada análise estatística pela correlação de Spearman, com significância de 5%. RESULTADOS: Foram observadas correlações negativas entre qualidade de vida e classe funcional: AQUAREL nos três domínios, desconforto no peito (r=-0,197, P=0,042), dispneia (r=-0,508, P =0,000), arritmia (r=-0,271, P=0,005) e, no SF-36 nos oito domínios. em relação à idade, correlação negativa com Capacidade Funcional do SF-36 (r=-0,338, P=0,000) e não se observou correlação com AQUAREL. Entre idade e classe funcional observou-se correlação positiva (r=0,237, P=0,014). CONCLUSÃO: Neste estudo, encontrou-se correlação negativa entre qualidade de vida e classe funcional, evidenciando nesta amostra que os pacientes pertencentes a melhor classe funcional apresentaram melhor qualidade de vida. Conforme maior idade, pior a qualidade de vida em Capacidade Funcional e em classe funcional. Sugere-se, que idade e classe funcional influenciam qualidade de vida e as escalas de classificação funcional podem constituir um dos instrumentos que integram a avaliação e refletem a qualidade de vida em portadores de marca-passo.
Resumo:
The objective of the researches in artificial intelligence is to qualify the computer to execute functions that are performed by humans using knowledge and reasoning. This work was developed in the area of machine learning, that it s the study branch of artificial intelligence, being related to the project and development of algorithms and techniques capable to allow the computational learning. The objective of this work is analyzing a feature selection method for ensemble systems. The proposed method is inserted into the filter approach of feature selection method, it s using the variance and Spearman correlation to rank the feature and using the reward and punishment strategies to measure the feature importance for the identification of the classes. For each ensemble, several different configuration were used, which varied from hybrid (homogeneous) to non-hybrid (heterogeneous) structures of ensemble. They were submitted to five combining methods (voting, sum, sum weight, multiLayer Perceptron and naïve Bayes) which were applied in six distinct database (real and artificial). The classifiers applied during the experiments were k- nearest neighbor, multiLayer Perceptron, naïve Bayes and decision tree. Finally, the performance of ensemble was analyzed comparatively, using none feature selection method, using a filter approach (original) feature selection method and the proposed method. To do this comparison, a statistical test was applied, which demonstrate that there was a significant improvement in the precision of the ensembles
Resumo:
Classifier ensembles are systems composed of a set of individual classifiers and a combination module, which is responsible for providing the final output of the system. In the design of these systems, diversity is considered as one of the main aspects to be taken into account since there is no gain in combining identical classification methods. The ideal situation is a set of individual classifiers with uncorrelated errors. In other words, the individual classifiers should be diverse among themselves. One way of increasing diversity is to provide different datasets (patterns and/or attributes) for the individual classifiers. The diversity is increased because the individual classifiers will perform the same task (classification of the same input patterns) but they will be built using different subsets of patterns and/or attributes. The majority of the papers using feature selection for ensembles address the homogenous structures of ensemble, i.e., ensembles composed only of the same type of classifiers. In this investigation, two approaches of genetic algorithms (single and multi-objective) will be used to guide the distribution of the features among the classifiers in the context of homogenous and heterogeneous ensembles. The experiments will be divided into two phases that use a filter approach of feature selection guided by genetic algorithm
Resumo:
Committees of classifiers may be used to improve the accuracy of classification systems, in other words, different classifiers used to solve the same problem can be combined for creating a system of greater accuracy, called committees of classifiers. To that this to succeed is necessary that the classifiers make mistakes on different objects of the problem so that the errors of a classifier are ignored by the others correct classifiers when applying the method of combination of the committee. The characteristic of classifiers of err on different objects is called diversity. However, most measures of diversity could not describe this importance. Recently, were proposed two measures of the diversity (good and bad diversity) with the aim of helping to generate more accurate committees. This paper performs an experimental analysis of these measures applied directly on the building of the committees of classifiers. The method of construction adopted is modeled as a search problem by the set of characteristics of the databases of the problem and the best set of committee members in order to find the committee of classifiers to produce the most accurate classification. This problem is solved by metaheuristic optimization techniques, in their mono and multi-objective versions. Analyzes are performed to verify if use or add the measures of good diversity and bad diversity in the optimization objectives creates more accurate committees. Thus, the contribution of this study is to determine whether the measures of good diversity and bad diversity can be used in mono-objective and multi-objective optimization techniques as optimization objectives for building committees of classifiers more accurate than those built by the same process, but using only the accuracy classification as objective of optimization
Resumo:
The techniques of Machine Learning are applied in classification tasks to acquire knowledge through a set of data or information. Some learning methods proposed in literature are methods based on semissupervised learning; this is represented by small percentage of labeled data (supervised learning) combined with a quantity of label and non-labeled examples (unsupervised learning) during the training phase, which reduces, therefore, the need for a large quantity of labeled instances when only small dataset of labeled instances is available for training. A commom problem in semi-supervised learning is as random selection of instances, since most of paper use a random selection technique which can cause a negative impact. Much of machine learning methods treat single-label problems, in other words, problems where a given set of data are associated with a single class; however, through the requirement existent to classify data in a lot of domain, or more than one class, this classification as called multi-label classification. This work presents an experimental analysis of the results obtained using semissupervised learning in troubles of multi-label classification using reliability parameter as an aid in the classification data. Thus, the use of techniques of semissupervised learning and besides methods of multi-label classification, were essential to show the results
Resumo:
Considerando o caráter multifacetado e socialmente heterogêneo da epidemia do HIV/AIDS, gostaria de refletir sobre as formas pragmáticas de apropriação, negociação e conflito de gênero em termos das disposições possíveis de masculinidade e feminilidade ou, ainda, suas amplas combinações entre homens e mulheres de diferentes identidades sexuais e diversos status sorológicos. Os contextos a serem explorados e descritos são aqueles particulares ao mundo social da AIDS, incluindo tanto o cotidiano de uma ONG AIDS específica, bem como os que se apresentam em situações tanto públicas como privadas na cidade do Rio de Janeiro. Pretendo discutir como novas subjetividades podem se constituir a partir dos usos de categorias sexuais e sorológicas, valores morais e de expressões performativas de gênero.
Resumo:
Foram estudados parâmetros relacionados ao estado nutricional de 151 adultos sadios, pertencentes à classe média e residindo em Botucatu, SP, Brasil. Valores antropométricos foram maiores nos homens, com exceção da prega tricipital e da área adiposa do braço. O aumento da idade associou-se a aumento dos valores da massa muscular (homens e mulheres) e do peso do corpo, da prega tricipital e da área adiposa do braço (mulheres). Os resultados antropométricos aproximaram-se dos valores referenciais internacionais, mas não foram inteiramente concordantes com eles, sendo inferiores para o peso corpóreo e circunferência e área musculares do braço. Nos indivíduos de menos de 50 anos, os valores da ingestão energética foram ligeiramente inferiores aos níveis recomendados. A ingestão protéica foi adequada. Os valores médios das proteínas e lípides do soro foram similares aos valores de referência. Testes de hipersensibilidade cutânea são apresentados como uma prova funcional para avaliação do estado nutricional.
Resumo:
In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality
Resumo:
This work discusses the application of techniques of ensembles in multimodal recognition systems development in revocable biometrics. Biometric systems are the future identification techniques and user access control and a proof of this is the constant increases of such systems in current society. However, there is still much advancement to be developed, mainly with regard to the accuracy, security and processing time of such systems. In the search for developing more efficient techniques, the multimodal systems and the use of revocable biometrics are promising, and can model many of the problems involved in traditional biometric recognition. A multimodal system is characterized by combining different techniques of biometric security and overcome many limitations, how: failures in the extraction or processing the dataset. Among the various possibilities to develop a multimodal system, the use of ensembles is a subject quite promising, motivated by performance and flexibility that they are demonstrating over the years, in its many applications. Givin emphasis in relation to safety, one of the biggest problems found is that the biometrics is permanently related with the user and the fact of cannot be changed if compromised. However, this problem has been solved by techniques known as revocable biometrics, which consists of applying a transformation on the biometric data in order to protect the unique characteristics, making its cancellation and replacement. In order to contribute to this important subject, this work compares the performance of individual classifiers methods, as well as the set of classifiers, in the context of the original data and the biometric space transformed by different functions. Another factor to be highlighted is the use of Genetic Algorithms (GA) in different parts of the systems, seeking to further maximize their eficiency. One of the motivations of this development is to evaluate the gain that maximized ensembles systems by different GA can bring to the data in the transformed space. Another relevant factor is to generate revocable systems even more eficient by combining two or more functions of transformations, demonstrating that is possible to extract information of a similar standard through applying different transformation functions. With all this, it is clear the importance of revocable biometrics, ensembles and GA in the development of more eficient biometric systems, something that is increasingly important in the present day
Resumo:
O objetivo deste estudo é analisar o resultado de intervenções psicopedagógicas no desempenho intelectual e em algumas funções cognitivas específicas em crianças provenientes de famílias de baixa renda, expostas a fatores pessoais e sociais adversos, como desnutrição, stress familiar, ambientes doméstico e de estimulação empobrecidos. Foram examinadas 63 crianças, alunas de escola, gratuita e em regime de semi-internato, que recebe crianças consideradas sob risco pessoal e social. Quarenta e três crianças receberam atividades que objetivam ativação cognitiva, durante período mínimo de 1 ano. Vinte crianças eram recém-admitidas. As técnicas da ativação escolhidas foram: método de aprendizagem ativa, com base em Piaget e método de ativação cognitiva para, através de exercícios psicomotores, desenvolver os pré-requisitos para aprendizagem e prevenção de dificuldades escolares, segundo Lambert. A avaliação das funções cognitivas mostrou: nível intelectual insatisfatório em 30% e médio ou superior em 70% e deficiências cognitivas específicas (noção do esquema corporal, percepção viso-motora, percepção de forma e perseveração) em 74%. Maior prevalência de crianças com inteligência superior (p < 0,05) associou-se a dois fatores: 1º: maior tempo de freqüência à escola (de 1 a 3 anos) e 2º: programas de ativação cognitiva. Não foram observadas diferenças entre os 2 grupos em relação à prevalência de alterações das funções cognitivas específicas examinadas. Os resultados demonstram que a recuperação de crianças com as dificuldades descritas é difícil. Exige investigação sistemática sobre os métodos psicopedagógicas selecionados e possivelmente, grande tempo de permanência da criança na escola, além de admissão mais precoce.
Resumo:
OBJETIVO: o presente trabalho tem o propósito de apresentar uma revisão da literatura acerca do tratamento da má oclusão de Classe II, divisão 1 de Angle, tendo a protrusão maxilar como o principal componente dessa má oclusão, durante a fase de crescimento e desenvolvimento craniofacial. Serão apresentadas as características de cada um desses aparelhos, os seus componentes, a forma adequada de utilização, os seus mecanismos de ação e, principalmente, os seus efeitos em todo o complexo dentofacial. CONCLUSÃO: nos casos em que se verifica apenas a protrusão maxilar, sem envolvimento mandibular, e se faz necessário o controle vertical, pode ser indicado o AEB, conjugado ao aparelho removível derivado do aparelho preconizado por Thurow. Já nas situações de combinação da protrusão maxilar com a retrusão mandibular, uma opção de tratamento é o ativador combinado à ancoragem extrabucal.
Resumo:
Diferentes fatores como estresse e oclusão podem diminuir a capacidade adaptativa do aparelho estomatognático e levar à ocorrência da disfunção temporomandibular (DTM). Objetivou-se neste estudo verificar a relação da classe econômica, escolaridade, sexo e idade na ocorrência da disfunção temporomandibular. A população deste estudo constituiu-se em uma amostra estatisticamente significativa de indivíduos de ambos os sexos pertencentes a diferentes classes econômicas da zona urbana do município de Piacatu, São Paulo, Brasil. Utilizou-se o Critério de Classificação Econômica Brasil (CCEB) para a estratificação econômica da população. Retirou-se uma amostra de cada estrato, na qual se aplicou o Questionário de Fonseca para verificar o grau de DTM. Os dados coletados foram analisados estatisticamente por meio do teste qui-quadrado, com nível de significância de 5%. No total, participaram da pesquisa 354 chefes de família. Não houve relação estatisticamente significativa entre classe econômica, escolaridade e faixa etária com a disfunção temporomandibular (DTM). Existiu relação entre sexo e DTM (p<0,02). As variáveis classe econômica, escolaridade e faixa etária não influenciam na ocorrência da DTM; entretanto, existe significância quanto ao sexo do indivíduo.
Resumo:
Objetivou-se neste estudo verificar a associação da classe econômica e do estresse com a ocorrência de disfunção temporomandibular (DTM). A população deste estudo constituiu-se de uma amostra estatisticamente significativa de 354 indivíduos de ambos os sexos, pertencentes a diferentes classes econômicas da zona urbana do município de Piacatu, São Paulo, Brasil. Para isso, utilizou-se o Critério de Classificação Econômica Brasil (CCEB) para a estratificação econômica da população. Retirou-se uma amostra de cada estrato, na qual aplicou-se o Questionário de Fonseca para verificar o grau de DTM, e a Escala de Reajustamento Social (SRRS) para verificar o grau de estresse. Os dados coletados foram tabulados por meio do programa Epi Info 2000, versão 3.2, e analisados estatisticamente por meio do Teste Qui-Quadrado, com nível de significância de 5%. Os chefes das famílias foram assim distribuídos: 4 famílias pertencentes à Classe A2, 14 à Classe B1, 25 à Classe B2, 112 à Classe C, 174 à Classe D e 25 à Classe E. Após a análise estatística não foi observada associação significativa entre classe econômica e disfunção temporomandibular (DTM); entretanto, a mesma ocorreu entre estresse e DTM (p<0,01). A classe econômica não influencia na ocorrência de DTM, mas existe associação direta entre estresse e disfunção temporomandibular.