997 resultados para Cell Patterning
Resumo:
Here we present evidence that the pyramidal cell phenotype varies markedly in the cortex of different anthropoid species. Regional and species differences in the size of, number of bifurcations in, and spine density of the basal dendritic arbors cannot be explained by brain size. Instead, pyramidal cell morphology appears to accord with the specialized cortical function these cells perform. Cells in the prefrontal cortex of humans are more branched and more spinous than those in the temporal and occipital lobes. Moreover, cells in the prefrontal cortex of humans are more branched and more spinous than those in the prefrontal cortex of macaque and marmoset monkeys. These results suggest that highly spinous, compartmentalized, pyramidal cells (and the circuits they form) are required to perform complex cortical functions such as comprehension, perception, and planning.
Resumo:
Pyramidal neurones were injected with Lucifer Yellow in slices cut tangential to the surface of area 7m and the superior temporal polysensory area (STP) of the macaque monkey. Comparison of the basal dendritic arbors of supra- and infragranular pyramidal neurones (n=139) that were injected in the same putative modules in the different cortical areas revealed variation in their structure. Moreover, there were relative differences in dendritic morphology of supra- and infragranular pyramidal neurones in the two cortical areas. Shell analyses revealed that layer III pyramidal neurones in area STP had considerably higher peak complexity (maximum number of dendritic intersections per Shell circle) than those in layer V, whereas peak complexities were similar for supra- and infragranular pyramidal neurones in area 7m. In both cortical areas, the basal dendritic trees of layer m pyramidal neurones were characterized by a higher spine density than those in layer V. Calculations of the total number of dendritic spines in the average basal dendritic arbor revealed that layer V pyramidal neurones in area 7m had twice as many spines as cells in layer III. (4535 and 2294, respectively). A similar calculation for neurones in area STP revealed that layer III pyramidal neurones had approximately the same number of spines as cells in layer V (3585 and 3850 spines, respectively). Relative differences in the branching patterns of, and the number of spines in, the basal dendritic arbors of supra- and infragranular pyramidal neurones in the different cortical areas may allow for integration of different numbers of inputs, and different degrees of dendritic processing. These results support the thesis that intra-areal circuitry differs in different cortical areas.
Resumo:
Peroxisome proliferator-activated receptor-alpha (PPAR alpha) is a member of the steroid hormone receptor superfamily. In rodents, PPAR alpha. alters genes involved in cell cycle regulation in hepatocytes. Some of these genes are implicated in neuronal cell death. Therefore, in this study, we examined the toxicological consequence of PPAR alpha activation in rat primary cultures of cerebellar granule neurons. Our studies demonstrated the presence of PPAR alpha mRNA in cultures by reverse transcriptase-polymerase chain reaction. After 10 days in vitro, cerebellar granule neuron cultures were incubated with the selective PPAR alpha activator 4-chloro-6-(2,3-xylidino)2-pyrimidinylthioacetic acid (Wy-14,643). The inherent toxicity of Wy-14,643 and the effect of PPAR alpha activation following toxic stimuli were assessed. In these studies, neurotoxicity was induced through reduction of extracellular [KCl] from 25 mM to 5.36 mM. We observed no inherent toxicity of Wy-1 4,643 (24 hr) in cultured cerebellar granule cells. However, after reduction of [KCl], cerebellar granule cell cultures incubated with Wy-14,643 showed significantly greater toxicity than controls. These results suggest a posssible role for PPAR(x in augmentation of cerebellar granule neuronal death after toxic stimuli. (C) 2001 Wiley-Liss, Inc.
Resumo:
The plasma membrane Ca2+ pump is a key regulator of cytosolic free Ca2+. Recent studies have demonstrated the dynamic expression of the plasma membrane Ca2+ pump in a variety of cell types. Furthermore, alterations in plasma membrane calcium pump activity have now been implicated in human disease. In this study, the development of a technique to quantitatively assess mRNA expression of the human plasma membrane Ca2+ ATPase (PMCA1) isoform of the plasma membrane Ca2+ pump, using a real-time reverse transcriptase-polymerase chain reaction (real-time RT-PCR) assay in a human breast epithelial cell line (MCF-7) is described. The sequences of the PMCA1 primers and probe for real-time RT-PCR are presented. The results also indicate that PMCA1 mRNA can be normalized to both 18S ribosomal RNA (18S rRNA) and human glyceraldehyde-3-phosphate dehydrogenase (hGAPDH) in MCF-7 cells. Real-time RT-PCR will be most useful in assessing PMCA1 mRNA expression in cases where only low amounts of RNA are available and/or when numerous samples must be assessed simultaneously. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Purpose: The phenotype of vascular smooth muscle cells (SMCs) is altered in several arterial pathologies, including the neointima formed after acute arterial injury. This study examined the time course of this phenotypic change in relation to changes in the amount and distribution of matrix glycosaminoglycans. Methods: The immunochemical staining of heparan sulphates (HS) and chondroitin sulphates (CS) in the extracellular matrix of the arterial wall was examined at early points after balloon catheter injury of the rabbit carotid artery. SMC phenotype was assessed by means of ultrastructural morphometry of the cytoplasmic volume fraction of myofilaments. The proportions of cell and matrix components in the media were analyzed with similar morphometric techniques. Results: HS and CS were shown in close association with SMCs of the uninjured arterial media as well as being more widespread within the matrix. Within 6 hours after arterial injury, there was loss of the regular pericellular distribution of both HS and CS, which was associated with a significant expansion in the extracellular space. This preceded the change in ultrastructural phenotype of the SMCs. The glycosaminoglycan loss was most exaggerated at 4 days, after which time the HS and CS reappeared around the medial SMCs. SMCs of the recovering media were able to rapidly replace their glycosaminoglycans, whereas SMCs of the developing neointima failed to produce HS as readily as they produced CS. Conclusions: These studies indicate that changes in glycosaminoglycans of the extracellular matrix precede changes in SMC phenotype after acute arterial injury. In the recovering arterial media, SMCs replace their matrix glycosaminoglycans rapidly, whereas the newly established neointima fails to produce similar amounts of heparan sulphates.
Resumo:
Despite their limitations, linear filter models continue to be used to simulate the receptive field properties of cortical simple cells. For theoreticians interested in large scale models of visual cortex, a family of self-similar filters represents a convenient way in which to characterise simple cells in one basic model. This paper reviews research on the suitability of such models, and goes on to advance biologically motivated reasons for adopting a particular group of models in preference to all others. In particular, the paper describes why the Gabor model, so often used in network simulations, should be dropped in favour of a Cauchy model, both on the grounds of frequency response and mutual filter orthogonality.
Resumo:
SOX9 is a transcription factor that plays a key role in chondrogenesis, Aggrecan is one of the major structural components in cartilage; however, the molecular mechanism of aggrecan gene regulation has not yet been fully elucidated, TC6 is a clonal chondrocytic cell line derived from articular cartilage, The purpose of this study was to examine whether SOX9 modulates aggrecan gene expression and to further identify molecules that regulate Sox9 expression in TC6 cells. SOX9 overexpression in TC6 cells enhanced by similar to 3-fold the transcriptional activity of the AgCAT-8 construct containing S-kilobase (kb) promoter/first exon/first intron fragments of the aggrecan gene. SOX9 enhancement of aggrecan promoter activity was lost when we deleted a 4.5-kb fragment from the 3'-end of the 8-kb fragment corresponding to the region including the first intron, In TC6 cells, SOX9 enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence >10-fold. SOX9 enhancement of aggrecan gene promoter activity and SOX9 transactivation through the Sry/Sox consensus sequence were not observed in osteoblastic osteosarcoma cells (ROS17/2.8), indicating the dependence on the cellular background. Northern blot analysis indicated that TC6 cells constitutively express Sox9 mRNA at relatively low levels. To examine regulation of Sox9 gene expression, we investigated the effects of calciotropic hormones and cytokines, Among these, retinoic acid (RA) specifically enhanced Sox9 mRNA expression in TC6 cells. The basal levels of Sox9 expression and its enhancement by RA were observed similarly at both permissive (33 degrees C) and nonpermissive (39 degrees C) temperatures. Furthermore, RA treatment enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence in TC6 cells. Moreover, RA treatment also enhanced the transcriptional activity of another reporter construct containing the enhancer region of the type II procollagen gene in TC6 cells. These observations indicate that SOX9 enhances aggrecan promoter activity and that its expression is up-regulated by RA in TC6 cells.
Resumo:
Although the principles of axon growth are well understood in vitro the mechanisms guiding axons in vivo are less clear. It has been postulated that growing axons in the vertebrate brain follow borders of neuroepithelial cells expressing specific regulatory genes. In the present study we reexamined this hypothesis by analysing the earliest growing axons in the forebrain of embryonic zebrafish. Confocal laser scanning microscopy was used to determine the spatiotemporal relationship between growing axons and the expression pattern of eight regulatory genes in zebrafish brain. Pioneer axons project either longitudinally or dorsoventrally to establish a scaffold of axon tracts during this developmental period. Each of the regulatory genes was expressed in stereotypical domains and the borders of some were oriented along dorsoventral and longitudinal planes. However, none of these borders clearly defined the trajectories of pioneer axons. In two cases axons coursed in proximity to the borders of shh and pax6, but only for a relatively short portion of their pathway. Only later growing axons were closely apposed to the borders of some gene expression domains. These results suggest that pioneer axons in the embryonic forebrain do not follow continuous pathways defined by the borders of regulatory gene expression domains, (C) 2000 Academic Press.
Resumo:
DCC (deleted in colon cancer), Neogenin and UNC-5 are all members of the immunoglobulin superfamily of transmembrane receptors which are believed to play a role in axon guidance by binding to their ligands, the Netrin/UNC-40 family of secreted molecules (Cell. Mol. Life Sci. 56 (1999) 62; Curr. Opin. Genet. Dev. 7 (1997) 87). Although zebrafish homologues of the Netrin family of secreted molecules have been reported, to date there has been no published description of zebrafish DCC homologues (Mol. Cell. Neurosci. 9 (1997) 293., Mol. Cell. Neurosci. I I ( 1998) 194; Mech. Dev. 62 (1997) 147). We report here the expression pattern of a zebrafish dcc (zdcc) homologue during the initial period of neurogenesis and axon tract formation within the developing central nervous system. Between 12 and 33 h post-fertilisation zdcc is expressed in a dynamic spatiotemporal pattern in all major subdivisions of the central nervous system. Double-labelling for zdcc and the post-mitotic neuronal marker HNK-1 revealed that subpopulations of neurons within the first nuclei of the zebrafish brain express zdcc. These results support our previous observation that patterning of neuronal clusters in the zebrafish brain occurs early in development (Dev. Bioi, 229 (2001) 271). (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Background: Heterozygotes for the C282Y mutation of the HFE gene may have altered hematology indices and higher iron stores than wild-type subjects. Methods: We performed a cross-sectional analysis of 1488 females and 1522 males 20-79 years of age drawn from the Busselton (Australia) population study to assess the effects of HFE genotype, age, gender, and lifestyle on serum iron and hematology indices. Results: Male C282Y heterozygotes had increased transferrin saturation compared with the wild-type genotype. Neither male nor female heterozygotes had significantly increased ferritin values compared with the wild-type genotype. Younger (20-29 years) wild-type males, but not heterozygous males, had significantly lower ferritin values than wild-type males in the older age groups. Compound heterozygous subjects had increased means for serum iron, transferrin saturation, corpuscular volume, and corpuscular hemoglobin compared with the wild-type genotype, and the males also had increased ferritin values (medians 323 vs 177 mug/L; P = 0.003). In both male and female wild-type subjects, an increased body mass index was associated with decreased serum iron and transferrin saturation and increased ferritin values. There was a significant increase in ferritin concentrations in both genders with increasing frequency of red meat consumption above a baseline of 1-2 times per week and alcohol intakes >10 g/day. Conclusions: Male C282Y heterozygotes had significantly increased transferrin saturation values. Compound heterozygous (C282Y/H63D) subjects formed a separate category of C282Y heterozygotes in whom both iron and red cell indices were significantly increased compared with the wild-type genotype. (C) 2001 American Association for Clinical Chemistry.
Resumo:
Selection in the thymus restricted by MHC and self-peptide shapes the diverse reactivities of the T-cell population which subsequently seeds into the peripheral tissues, in anticipation of the universe of pathogen antigens to which the organism may be exposed. A necessary corollary is the potential for T-cell self-reactivity (autoimmunity) in the periphery. Transgenic mouse models in which transgene expression in the thymus is prevented or excluded, have been particularly useful for determining the immunological outcome when T-cells encounter transgene-encoded 'self' antigen in peripheral tissues. Data suggest that non-mutually exclusive mechanisms of T-cells 'ignoring' self-antigen, T-cell deletion, T-cell anergy and T-cell immunoregulation have evolved to prevent self-reactivity while maintaining T-cell diversity. The peripheral T-cell repertoire, far from being static following maturation through the thymus, is in a dynamic stated determined by these peripheral selective and immunoregulatory influences. This article reviews the evidence with particular reference to CD8+ive T-cells.
Resumo:
The E7 oncoprotein of human papillomavirus 16 (HPV16) transforms basal and suprabasal cervical epithelial cells and is a tumor-specific antigen in cervical carcinoma, to which immunotherapeutic strategies aimed at cytotoxic T-lymphocyte (CTL) induction are currently directed. By quantifying major histocompatibility complex class I tetramer-binding T cells and CTL in mice expressing an HPV16 E7 transgene from the keratin-l l (K14) promoter in basal and suprabasal keratinocytes and in thymic cortical epithelium, we show that antigen responsiveness of both E7- and non-E7-specific CD8(+) cells is down-regulation compared to non-E7 transgenic control mice. We show that the effect is specific for E7, and not another transgene, expressed from the K14 promoter, Down-regulation did not involve deletion of CD8(+) T cells of high affinity or high avidity, and T-cell receptor (TCR) VP-chain usage and TCR receptor density were similar in antigen-responsive cells from E7 transgenic and non-E7 transgenic mice. These data indicate that E7 expressed chronically from the K14 promoter nonspecifically down-regulates CD8+ T-cell responses. The in vitro data correlated with the failure of immunized E7 transgenic mice to control the growth of an E7-expressing tumor challenge, We have previously shown that E7-directed CTL down-regulation correlates with E7 expression in peripheral but not thymic epithelium (T, Dean et al., J, Virol. 73:6166-6170, 1999), The findings have implications for the immunological consequences of E7-expressing tumor development and E7-directed immunization strategies. Generically, the findings illustrate a T-cell immunomodulatory function for a virally encoded human oncoprotein.