867 resultados para Cascaded classifier


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-known data mining algorithms rely on inputs in the form of pairwise similarities between objects. For large datasets it is computationally impossible to perform all pairwise comparisons. We therefore propose a novel approach that uses approximate Principal Component Analysis to efficiently identify groups of similar objects. The effectiveness of the approach is demonstrated in the context of binary classification using the supervised normalized cut as a classifier. For large datasets from the UCI repository, the approach significantly improves run times with minimal loss in accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manual counting of bacterial colony forming units (CFUs) on agar plates is laborious and error-prone. We therefore implemented a colony counting system with a novel segmentation algorithm to discriminate bacterial colonies from blood and other agar plates.A colony counter hardware was designed and a novel segmentation algorithm was written in MATLAB. In brief, pre-processing with Top-Hat-filtering to obtain a uniform background was followed by the segmentation step, during which the colony images were extracted from the blood agar and individual colonies were separated. A Bayes classifier was then applied to count the final number of bacterial colonies as some of the colonies could still be concatenated to form larger groups. To assess accuracy and performance of the colony counter, we tested automated colony counting of different agar plates with known CFU numbers of S. pneumoniae, P. aeruginosa and M. catarrhalis and showed excellent performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Children and adolescents are at high risk of sustaining fractures during growth. Therefore, epidemiological assessment is crucial for fracture prevention. The AO Comprehensive Injury Automatic Classifier (AO COIAC) was used to evaluate epidemiological data of pediatric long bone fractures in a large cohort. METHODS Data from children and adolescents with long bone fractures sustained between 2009 and 2011, treated at either of two tertiary pediatric surgery hospitals in Switzerland, were retrospectively collected. Fractures were classified according to the AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF). RESULTS For a total of 2716 patients (60% boys), 2807 accidents with 2840 long bone fractures (59% radius/ulna; 21% humerus; 15% tibia/fibula; 5% femur) were documented. Children's mean age (SD) was 8.2 (4.0) years (6% infants; 26% preschool children; 40% school children; 28% adolescents). Adolescent boys sustained more fractures than girls (p < 0.001). The leading cause of fractures was falls (27%), followed by accidents occurring during leisure activities (25%), at home (14%), on playgrounds (11%), and traffic (11%) and school accidents (8%). There was boy predominance for all accident types except for playground and at home accidents. The distribution of accident types differed according to age classes (p < 0.001). Twenty-six percent of patients were classed as overweight or obese - higher than data published by the WHO for the corresponding ages - with a higher proportion of overweight and obese boys than in the Swiss population (p < 0.0001). CONCLUSION Overall, differences in the fracture distribution were sex and age related. Overweight and obese patients seemed to be at increased risk of sustaining fractures. Our data give valuable input into future development of prevention strategies. The AO PCCF proved to be useful in epidemiological reporting and analysis of pediatric long bone fractures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last decade, a plethora of computer-aided diagnosis (CAD) systems have been proposed aiming to improve the accuracy of the physicians in the diagnosis of interstitial lung diseases (ILD). In this study, we propose a scheme for the classification of HRCT image patches with ILD abnormalities as a basic component towards the quantification of the various ILD patterns in the lung. The feature extraction method relies on local spectral analysis using a DCT-based filter bank. After convolving the image with the filter bank, q-quantiles are computed for describing the distribution of local frequencies that characterize image texture. Then, the gray-level histogram values of the original image are added forming the final feature vector. The classification of the already described patches is done by a random forest (RF) classifier. The experimental results prove the superior performance and efficiency of the proposed approach compared against the state-of-the-art.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lung cancer remains the most common cause of cancer deaths worldwide, yet there is currently a lack of diagnostic noninvasive biomarkers that could guide treatment decisions. Small molecules (<1,500 Da) were measured in urine collected from 469 patients with lung cancer and 536 population controls using unbiased liquid chromatography/mass spectrometry. Clinical putative diagnostic and prognostic biomarkers were validated by quantitation and normalized to creatinine levels at two different time points and further confirmed in an independent sample set, which comprises 80 cases and 78 population controls, with similar demographic and clinical characteristics when compared with the training set. Creatine riboside (IUPAC name: 2-{2-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)-oxolan-2-yl]-1-methylcarbamimidamido}acetic acid), a novel molecule identified in this study, and N-acetylneuraminic acid (NANA) were each significantly (P < 0.00001) elevated in non-small cell lung cancer and associated with worse prognosis [HR = 1.81 (P = 0.0002), and 1.54 (P = 0.025), respectively]. Creatine riboside was the strongest classifier of lung cancer status in all and stage I-II cases, important for early detection, and also associated with worse prognosis in stage I-II lung cancer (HR = 1.71, P = 0.048). All measurements were highly reproducible with intraclass correlation coefficients ranging from 0.82 to 0.99. Both metabolites were significantly (P < 0.03) enriched in tumor tissue compared with adjacent nontumor tissue (N = 48), thus revealing their direct association with tumor metabolism. Creatine riboside and NANA may be robust urinary clinical metabolomic markers that are elevated in tumor tissue and associated with early lung cancer diagnosis and worse prognosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous research has demonstrated that adults are successful at visually tracking rigidly moving items, but experience great difficulties when tracking substance-like ‘‘pouring’’ items. Using a comparative approach, we investigated whether the presence/absence of the grammatical count–mass distinction influences adults and children’s ability to attentively track objects versus substances. More specifically, we aimed to explore whether the higher success at tracking rigid over substance-like items appears universally or whether speakers of classifier languages (like Japanese, not marking the object–substance distinction) are advantaged at tracking substances as compared to speakers of non-classifier languages (like Swiss German, marking the object–substance distinction). Our results supported the idea that language has no effect on low-level cognitive processes such as the attentive visual processing of objects and substances. We concluded arguing that the tendency to prioritize objects is universal and independent of specific characteristics of the language spoken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activities of daily living (ADL) are important for quality of life. They are indicators of cognitive health status and their assessment is a measure of independence in everyday living. ADL are difficult to reliably assess using questionnaires due to self-reporting biases. Various sensor-based (wearable, in-home, intrusive) systems have been proposed to successfully recognize and quantify ADL without relying on self-reporting. New classifiers required to classify sensor data are on the rise. We propose two ad-hoc classifiers that are based only on non-intrusive sensor data. METHODS: A wireless sensor system with ten sensor boxes was installed in the home of ten healthy subjects to collect ambient data over a duration of 20 consecutive days. A handheld protocol device and a paper logbook were also provided to the subjects. Eight ADL were selected for recognition. We developed two ad-hoc ADL classifiers, namely the rule based forward chaining inference engine (RBI) classifier and the circadian activity rhythm (CAR) classifier. The RBI classifier finds facts in data and matches them against the rules. The CAR classifier works within a framework to automatically rate routine activities to detect regular repeating patterns of behavior. For comparison, two state-of-the-art [Naïves Bayes (NB), Random Forest (RF)] classifiers have also been used. All classifiers were validated with the collected data sets for classification and recognition of the eight specific ADL. RESULTS: Out of a total of 1,373 ADL, the RBI classifier correctly determined 1,264, while missing 109 and the CAR determined 1,305 while missing 68 ADL. The RBI and CAR classifier recognized activities with an average sensitivity of 91.27 and 94.36%, respectively, outperforming both RF and NB. CONCLUSIONS: The performance of the classifiers varied significantly and shows that the classifier plays an important role in ADL recognition. Both RBI and CAR classifier performed better than existing state-of-the-art (NB, RF) on all ADL. Of the two ad-hoc classifiers, the CAR classifier was more accurate and is likely to be better suited than the RBI for distinguishing and recognizing complex ADL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research on wordhood and morphosyntactic boundness suggests that the domains word and clitic do not lend themselves to cross-linguistic categorization but must be defined language specifically. In most languages, it is necessary to define word on two separate levels, the phonological word (p-word) and the grammatical word (g-word), and to describe mismatches between the two. This paper defines those domains for Garifuna, an Arawak language spoken in Honduras, Central America. Garifuna has auxiliary and classifier constructions which make up two p-words, and only one g-word. P-words made up of more than one g-word involve second position enclitics, word scope clitics, and proclitic connectives and prepositions. Garifuna clitics are typically unstressed, able to attach to hosts of any word class and able to string together into clusters. Enclitics are used to express tense-aspect, modality, and adverbial meanings, among others. In other languages, clitic clusters tend to display a fixed order; Garifuna clitic order seems quite free, although certain orders are preferred. Also, contrary to cross-linguistic tendencies, proclitic connectives can act as hosts for enclitic clusters, contradicting the commonly used definition of clitics as phonologically weak elements that need to attach to a host to form a p-word; such clitic-only p-words are problematic for traditional definitions of clitics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lung adenosquamous carcinoma is a particular subtype of non-small cell lung carcinoma that is defined by the coexistence of adenocarcinoma and squamous cell carcinoma components. The aim of this study was to assess the mutational profile in each component of 16 adenosquamous carcinoma samples from a Caucasian population by a combination of next generation sequencing using the cancer hotspot panel as well as the colon and lung cancer panel and FISH. Identified mutations were confirmed by Sanger sequencing of DNA from cancer cells of each component collected by Laser Capture microdissection. Mutations typical for adenocarcinoma as well as squamous cell carcinoma were identified. Driver mutations were predominantly in the trunk suggesting a monoclonal origin of adenosquamous carcinoma. Most remarkably, EGFR mutations and mutations in the PI3K signaling pathway, which accounted for 30% and 25% of tumors respectively, were more prevalent while KRAS mutations were less prevalent than expected for a Caucasian population. Surprisingly, expression of classifier miR-205 was intermediate between that of classical adenocarcinoma and squamous cell carcinoma suggesting that adenosquamous carcinoma is a transitional stage between these tumor types. The high prevalence of therapy-relevant targets opens new options of therapeutic intervention for adenosquamous carcinoma patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE Our aim was to assess the diagnostic and predictive value of several quantitative EEG (qEEG) analysis methods in comatose patients. METHODS In 79 patients, coupling between EEG signals on the left-right (inter-hemispheric) axis and on the anterior-posterior (intra-hemispheric) axis was measured with four synchronization measures: relative delta power asymmetry, cross-correlation, symbolic mutual information and transfer entropy directionality. Results were compared with etiology of coma and clinical outcome. Using cross-validation, the predictive value of measure combinations was assessed with a Bayes classifier with mixture of Gaussians. RESULTS Five of eight measures showed a statistically significant difference between patients grouped according to outcome; one measure revealed differences in patients grouped according to the etiology. Interestingly, a high level of synchrony between the left and right hemisphere was associated with mortality on intensive care unit, whereas higher synchrony between anterior and posterior brain regions was associated with survival. The combination with the best predictive value reached an area-under the curve of 0.875 (for patients with post anoxic encephalopathy: 0.946). CONCLUSIONS EEG synchronization measures can contribute to clinical assessment, and provide new approaches for understanding the pathophysiology of coma. SIGNIFICANCE Prognostication in coma remains a challenging task. qEEG could improve current multi-modal approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present observations of total cloud cover and cloud type classification results from a sky camera network comprising four stations in Switzerland. In a comprehensive intercomparison study, records of total cloud cover from the sky camera, long-wave radiation observations, Meteosat, ceilometer, and visual observations were compared. Total cloud cover from the sky camera was in 65–85% of cases within ±1 okta with respect to the other methods. The sky camera overestimates cloudiness with respect to the other automatic techniques on average by up to 1.1 ± 2.8 oktas but underestimates it by 0.8 ± 1.9 oktas compared to the human observer. However, the bias depends on the cloudiness and therefore needs to be considered when records from various observational techniques are being homogenized. Cloud type classification was conducted using the k-Nearest Neighbor classifier in combination with a set of color and textural features. In addition, a radiative feature was introduced which improved the discrimination by up to 10%. The performance of the algorithm mainly depends on the atmospheric conditions, site-specific characteristics, the randomness of the selected images, and possible visual misclassifications: The mean success rate was 80–90% when the image only contained a single cloud class but dropped to 50–70% if the test images were completely randomly selected and multiple cloud classes occurred in the images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To differentiate diabetic macular edema (DME) from pseudophakic cystoid macular edema (PCME) based solely on spectral-domain optical coherence tomography (SD-OCT). METHODS: This cross-sectional study included 134 participants: 49 with PCME, 60 with DME, and 25 with diabetic retinopathy (DR) and ME after cataract surgery. First, two unmasked experts classified the 25 DR patients after cataract surgery as either DME, PCME, or mixed-pattern based on SD-OCT and color-fundus photography. Then all 134 patients were divided into two datasets and graded by two masked readers according to a standardized reading-protocol. Accuracy of the masked readers to differentiate the diseases based on SD-OCT parameters was tested. Parallel to the masked readers, a computer-based algorithm was established using support vector machine (SVM) classifiers to automatically differentiate disease entities. RESULTS: The masked readers assigned 92.5% SD-OCT images to the correct clinical diagnose. The classifier-accuracy trained and tested on dataset 1 was 95.8%. The classifier-accuracy trained on dataset 1 and tested on dataset 2 to differentiate PCME from DME was 90.2%. The classifier-accuracy trained and tested on dataset 2 to differentiate all three diseases was 85.5%. In particular, higher central-retinal thickness/retinal-volume ratio, absence of an epiretinal-membrane, and solely inner nuclear layer (INL)-cysts indicated PCME, whereas higher outer nuclear layer (ONL)/INL ratio, the absence of subretinal fluid, presence of hard exudates, microaneurysms, and ganglion cell layer and/or retinal nerve fiber layer cysts strongly favored DME in this model. CONCLUSIONS: Based on the evaluation of SD-OCT, PCME can be differentiated from DME by masked reader evaluation, and by automated analysis, even in DR patients with ME after cataract surgery. The automated classifier may help to independently differentiate these two disease entities and is made publicly available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MRSI grids frequently show spectra with poor quality, mainly because of the high sensitivity of MRS to field inhomogeneities. These poor quality spectra are prone to quantification and/or interpretation errors that can have a significant impact on the clinical use of spectroscopic data. Therefore, quality control of the spectra should always precede their clinical use. When performed manually, quality assessment of MRSI spectra is not only a tedious and time-consuming task, but is also affected by human subjectivity. Consequently, automatic, fast and reliable methods for spectral quality assessment are of utmost interest. In this article, we present a new random forest-based method for automatic quality assessment of (1) H MRSI brain spectra, which uses a new set of MRS signal features. The random forest classifier was trained on spectra from 40 MRSI grids that were classified as acceptable or non-acceptable by two expert spectroscopists. To account for the effects of intra-rater reliability, each spectrum was rated for quality three times by each rater. The automatic method classified these spectra with an area under the curve (AUC) of 0.976. Furthermore, in the subset of spectra containing only the cases that were classified every time in the same way by the spectroscopists, an AUC of 0.998 was obtained. Feature importance for the classification was also evaluated. Frequency domain skewness and kurtosis, as well as time domain signal-to-noise ratios (SNRs) in the ranges 50-75 ms and 75-100 ms, were the most important features. Given that the method is able to assess a whole MRSI grid faster than a spectroscopist (approximately 3 s versus approximately 3 min), and without loss of accuracy (agreement between classifier trained with just one session and any of the other labelling sessions, 89.88%; agreement between any two labelling sessions, 89.03%), the authors suggest its implementation in the clinical routine. The method presented in this article was implemented in jMRUI's SpectrIm plugin. Copyright © 2016 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Academic and industrial research in the late 90s have brought about an exponential explosion of DNA sequence data. Automated expert systems are being created to help biologists to extract patterns, trends and links from this ever-deepening ocean of information. Two such systems aimed on retrieving and subsequently utilizing phylogenetically relevant information have been developed in this dissertation, the major objective of which was to automate the often difficult and confusing phylogenetic reconstruction process. ^ Popular phylogenetic reconstruction methods, such as distance-based methods, attempt to find an optimal tree topology (that reflects the relationships among related sequences and their evolutionary history) by searching through the topology space. Various compromises between the fast (but incomplete) and exhaustive (but computationally prohibitive) search heuristics have been suggested. An intelligent compromise algorithm that relies on a flexible “beam” search principle from the Artificial Intelligence domain and uses the pre-computed local topology reliability information to adjust the beam search space continuously is described in the second chapter of this dissertation. ^ However, sometimes even a (virtually) complete distance-based method is inferior to the significantly more elaborate (and computationally expensive) maximum likelihood (ML) method. In fact, depending on the nature of the sequence data in question either method might prove to be superior. Therefore, it is difficult (even for an expert) to tell a priori which phylogenetic reconstruction method—distance-based, ML or maybe maximum parsimony (MP)—should be chosen for any particular data set. ^ A number of factors, often hidden, influence the performance of a method. For example, it is generally understood that for a phylogenetically “difficult” data set more sophisticated methods (e.g., ML) tend to be more effective and thus should be chosen. However, it is the interplay of many factors that one needs to consider in order to avoid choosing an inferior method (potentially a costly mistake, both in terms of computational expenses and in terms of reconstruction accuracy.) ^ Chapter III of this dissertation details a phylogenetic reconstruction expert system that selects a superior proper method automatically. It uses a classifier (a Decision Tree-inducing algorithm) to map a new data set to the proper phylogenetic reconstruction method. ^