955 resultados para Cardioprotection cell-based assays
Resumo:
The enzyme purine nucleoside phosphorylase (PNP) is a target for the discovery of new lead compounds employed on the treatment severe T-cell mediated disorders. Within this context, the development of new, direct, and reliable methods for ligands screening is an important task. This paper describes the preparation of fused silica capillaries human PNP (HsPNP) immobilized enzyme reactor (IMER). The activity of the obtained IMER is monitored on line in a multidimensional liquid chromatography system, by the quantification of the product formed throughout the enzymatic reaction. The Km value for the immobilized enzyme was about twofold higher than that measured for the enzyme in solution (255 +/- 29.2 mu M and 133 +/- 114.9 mu M, respectively). A new fourth-generation immucillin derivative (DI4G: IC50 = 40.6 +/- 0.36 nM), previously identified and characterized in HsPNP free enzyme assays, was used to validate the IMER as a screening method for HsPNP ligands. The validated method was also used for mechanistic studies with this inhibitor. This new approach is a valuable tool to PNP ligand screening, since it directly measures the hypoxanthine released by inosine phosphorolysis, thus furnishing more reliable results than those one used in a coupled enzymatic spectrophotometric assay. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR) 4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+) T and CD8(+) T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-gamma) production by CD4(+) T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-gamma response by CD8(+) T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4+ T and CD8+ T cell responses elicited by a specific immunological adjuvant.
Resumo:
The performance of an ABPBI-based High Temperature H-2/O-2 PEMFC system was studied under different experimental conditions. Increasing the temperature from 130 to 170 degrees C improved the cell performance, even though further increase was not beneficial for the system. Humidification of the H-2 stream ameliorated this behaviour, even though operating above 170 degrees C is not advisable in terms of cell performance. A significant electrolyte dehydration seems to negatively affect the fuel cell performance, especially in the case of the anode. In the presence of 2% vol. CO in the H-2 stream, the temperature exerted a positive effect on the cell performance, reducing the strong adsorption of this poison on the platinum sites. Moreover, humidification of the H-2 + CO stream increased the maximum power densities of the cell, further alleviating the CO poisoning effects. Actual CO-O-2 fuel cell results confirmed the significant beneficial effect of the relative humidity on the kinetics of the CO oxidation process. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The low efficiency of gene transfer is a recurrent problem in DNA vaccine development and gene therapy studies using non-viral vectors such as plasmid DNA (pDNA). This is mainly due to the fact that during their traffic to the target cell's nuclei, plasmid vectors must overcome a series of physical, enzymatic and diffusional barriers. The main objective of this work is the development of recombinant proteins specifically designed for pDNA delivery, which take advantage of molecular motors like dynein, for the transport of cargos from the periphery to the centrosome of mammalian cells. A DNA binding sequence was fused to the N-terminus of the recombinant human dynein light chain LC8. Expression studies indicated that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. As expected, gel permeation assays found the purified protein mainly present as dimers, the functional oligomeric state of LC8. Gel retardation assays and atomic force microscopy proved the ability of the fusion protein to interact and condense pDNA. Zeta potential measurements indicated that LC8 with DNA binding domain (LD4) has an enhanced capacity to interact and condense pDNA, generating positively charged complexes. Transfection of cultured HeLa cells confirmed the ability of the LD4 to facilitate pDNA uptake and indicate the involvement of the retrograde transport in the intracellular trafficking of pDNA: LD4 complexes. Finally, cytotoxicity studies demonstrated a very low toxicity of the fusion protein vector, indicating the potential for in vivo applications. The study presented here is part of an effort to develop new modular shuttle proteins able to take advantage of strategies used by viruses to infect mammalian cells, aiming to provide new tools for gene therapy and DNA vaccination studies. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A new series of donor acceptor copolymers were synthesized via the Witting route and applied as an active layer in organic thin-films solar cells. These copolymers are composed of fluorene thiophene and phenylene thiophene units. The ratio between those was systematically varied, and copolymers containing 0%, 50%, and 75% of phenylene thiophene were characterized and evaluated when used in photovoltaic devices. The copolymers' composition, photophysical, electrical, and morphological properties are addressed and correlated with device performance. The 50% copolymer ratio was found to be the best copolymer of the series, yielding a power conversion efficiency (PCE) under air mass (AM) 1.5 conditions of 2.4% in the bilayer heterojunction with the C-60 molecule. Aiming at flexible electronics applications, solutions based on the heterojunction of this copolymer with PCBM (6,6-phenyl-C-61-butyric acid methyl ester) were also successfully deposited using an inkjet printing method and used as an active layer in solar cells.
Resumo:
Mit der Zielsetzung der vorliegenden Arbeit wurde die detailierten Analyse von Migrationsdynamiken epithelilaler Monolayer anhand zweier neuartiger in vitro Biosensoren verfolgt, der elektrischen Zell-Substrat Impedanz Spektroskopie (electrical cell-substrate impedance sensing, ECIS) sowie der Quarz Kristall Mikrowaage (quartz crystal microbalance, QCM). Beide Methoden erwiesen sich als sensitiv gegenüber der Zellmotilität und der Nanozytotoxizität.rnInnerhalb des ersten Projektes wurde ein Fingerprinting von Krebszellen anhand ihrer Motilitätsdynamiken und der daraus generierten elektrischen oder akkustischen Fluktuationen auf ECIS oder QCM Basis vorgenommen; diese Echtzeitsensoren wurdene mit Hilfe klassicher in vitro Boyden-Kammer Migrations- und Invasions-assays validiert. Fluktuationssignaturen, also Langzeitkorrelationen oder fraktale Selbstähnlichkeit aufgrund der kollektiven Zellbewegung, wurden über Varianz-, Fourier- sowie trendbereinigende Fluktuationsanalyse quantifiziert. Stochastische Langzeitgedächtnisphänomene erwiesen sich als maßgebliche Beiträge zur Antwort adhärenter Zellen auf den QCM und ECIS-Sensoren. Des weiteren wurde der Einfluss niedermolekularer Toxine auf die Zytoslelettdynamiken verfolgt: die Auswirkungen von Cytochalasin D, Phalloidin und Blebbistatin sowie Taxol, Nocodazol und Colchicin wurden dabei über die QCM und ECIS Fluktuationsanalyse erfasst.rnIn einem zweiten Projektschwerpunkt wurden Adhäsionsprozesse sowie Zell-Zell und Zell-Substrat Degradationsprozesse bei Nanopartikelgabe charackterisiert, um ein Maß für Nanozytotoxizität in Abhangigkeit der Form, Funktionalisierung Stabilität oder Ladung der Partikel zu erhalten.rnAls Schlussfolgerung ist zu nennen, dass die neuartigen Echtzeit-Biosensoren QCM und ECIS eine hohe Zellspezifität besitzen, auf Zytoskelettdynamiken reagieren sowie als sensitive Detektoren für die Zellvitalität fungieren können.
Resumo:
Diese Arbeit hat viele beispiellose synthetische Ansätze für neuartige Verbundwerkstoffe Graphen-und stickstoffhaltigen graphitischen Materialien erforscht. Die erhaltenen Materialien wurden als den transparenten Elektroden der Solarzellen, die freistehenden Elektroden mit verbesserter mechanischer Festigkeit, und die Kathoden der Brennstoffzellen der Sauerstoffreduktion aufgebracht.rnAlle Ergebnisse haben eindeutig das große Potenzial von Graphen basierenden Materialien und stickstoffhaltigen graphitische Kohlenstoffe als neuartige Elektrodenmaterialien für neue Energie-Geräten demonstriert.
Resumo:
In allogeneic hematopoietic stem cell transplantation (allo-HSCT), alloreactive T lymphocytes of donor origin mediate the beneficial graft-versus-leukemia effect but also induce graft-versus-host disease (GvHD). Since human leukocyte antigens (HLA) mismatch alleles represent major targets of alloreactive T lymphocytes, patient and donor are usually matched for the class I molecules A, B, C, and for the class II molecules DRB1 and DQB1, in order do reduce the risk of GvHD. The HLA-DPB1 locus, however, is still ignored in donor selection. Interestingly, clinical studies have demonstrated that disparities at HLA-DQB1 alleles as well as distinct HLA DPB1 mismatch constellations do not adversely affect the outcome of allo-HSCT. It has also been shown that HLA class II is predominantly expressed on hematopoietic cells under non-inflammatory conditions. Therefore, this PhD thesis focused on the application of CD4 T cells in adoptive immunotherapy of leukemias.rnIn the first part of this thesis we developed a rapid screening approach to detect T-cell reactivity of donors to single HLA class II mismatch alleles. Allo-HLA reactivity was measured in naive, memory, and entire CD4 T cells isolated from PBMC of healthy donors by flow cytometric cell sorting according to expression of the differentiation markers CD45RA, CD45RO, CD62L, and CCR7. T-cell populations were defined by a single marker to facilitate translation into a clinical-grade allo-depletion procedure. Alloreactivity to single HLA-DR/-DQ mismatch alleles was analyzed in short-term mixed lymphocyte reactions (MLR) in vitro. As standard antigen-presenting cells, we used the HLA-deficient cell line K562 upon electroporation with single HLA-DR/-DQ allele mRNA. We observed in IFN-γ ELISpot assays that allo-HLA-reactivity preferentially derived from subsets enriched for naive compared to memory T cells in healthy donors, irrespective of the HLA mismatch allele. This separation was most efficient if CD62L (P=0.008) or CD45RA (P=0.011) were used as marker. Median numbers of allo-HLA-reactive effector cells were 3.5-fold and 16.6-fold lower in CD62Lneg and CD45RAneg memory CD4 T cells than in entire CD4 T cells, respectively. In allele-specific analysis, alloreactivity to single HLA-DR alleles clearly exceeded that to HLA-DQ alleles. In terms of alloproliferation no significant difference could be observed between individual CD4 T-cell subsets. rnThe second part of this thesis dealed with the generation of allo-HLA-DQ/-DP specific CD4 T cells. Naive CD45RApos CD4 T cells isolated from healthy donor PBMC by flow cytometric cell sorting were stimulated in MLR against single allo-HLA-DQ/-DP alleles transfected into autologous mature monocyte-derived dendritic cells by mRNA electroporation. Rapidly expanding HLA-DQ/-DP mismatch reactive T cells significantly recognized and cytolysed primary acute myeloid leukemia (AML) blasts, fibroblasts (FB) and keratinocytes (KC) in IFN-γ ELISpot and 51chromium release assays if the targets carried the HLA DQ/ DP allele used for T cell priming. While AML blasts were recognized independent of pre-incubating them with IFN-γ, recognition of FB and KC required IFN-γ pre treatment. We further investigated HLA class II expression on hematopoietic and non-hematopoietic cells by flow cytometry. HLA class II was not detected on primary FB, KC, and non-malignant kidney cells, but was expressed at significant levels on primary AML blasts and B-LCL. Up-regulation of HLA class II expression was observed on all cell types after pre-incubation with IFN-γ.rnIn summary, the novel K562-HLA based MLR approach revealed that naive-depleted CD4 T-cell subsets of healthy individuals contain decreased allo-HLA reactivity in vitro. We propose the application of CD45RAneg naive-depleted CD4 T cells as memory T cell therapy, which might be beneficial for HLA-mismatched patients at high-risk of GvHD and low-risk of leukemia relapse. Memory T cells might also provide important post-transplant immune functions against infectious agents. Additionally, the screening approach could be employed as test system to detect donors which have low risks for the emergence of GvHD after allo-HSCT. In the second part of this thesis we developed a protocol for the generation of allo-HLA-DQ/-DP specific CD4 T cell lines, which could be applied in situations in which patient and donor are matched in all HLA alleles but one HLA-DQ/-DP allele with low GvHD potential. These T cells showed lytic activity to leukemia cells while presumably sparing non-hematopoietic tissues under non-inflammatory conditions. Therefore, they might be advantageous for allo-HSCT patients with advanced stage AML after reduced-intensity conditioning and T-cell depletion for the replenishment of anti-leukemic reactivity if the risk for disease relapse is high. rn
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Resumo:
This phase II trial aimed to evaluate feasibility and efficacy of a first-line combination of targeted therapies for advanced non-squamous NSCLC: bevacizumab (B) and erlotinib (E), followed by platinum-based CT at disease progression (PD).
Resumo:
Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of morphology-based approaches. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
This phase I trial was designed to develop a new effective and well-tolerated regimen for patients with aggressive B cell lymphoma not eligible for front-line anthracycline-based chemotherapy or aggressive second-line treatment strategies. The combination of rituximab (375 mg/m(2) on day 1), bendamustine (70 mg/m(2) on days 1 and 2), and lenalidomide was tested with a dose escalation of lenalidomide at three dose levels (10, 15, or 20 mg/day) using a 3 + 3 design. Courses were repeated every 4 weeks. The recommended dose was defined as one level below the dose level identifying ≥2/6 patients with a dose-limiting toxicity (DLT) during the first cycle. Thirteen patients were eligible for analysis. Median age was 77 years. WHO performance status was 0 or 1 in 12 patients. The Charlson Comorbidity Index showed relevant comorbidities in all patients. Two DLTs occurred at the second dose level (15 mg/day) within the first cycle: one patient had prolonged grade 3 neutropenia, and one patient experienced grade 4 cardiac adverse event (myocardial infarction). Additional grade 3 and 4 toxicities were as follows: neutropenia (31 %), thrombocytopenia (23 %), cardiac toxicity (31 %), fatigue (15 %), and rash (15 %). The dose of lenalidomide of 10 mg/day was recommended for a subsequent phase II in combination with rituximab 375 mg/m(2) on day 1 and bendamustine 70 mg/m(2) on days 1 and 2.
Resumo:
PURPOSE: The cyclin D1 (CCND1) A870G gene polymorphism is linked to the outcome in patients with resectable non-small cell lung cancer (NSCLC). Here, we investigated the impact of this polymorphism on smoking-induced cancer risk and clinical outcome in patients with NSCLC stages I-IV. METHODS: CCND1 A870G genotype was determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis (RFLP) of DNA extracted from blood. The study included 244 NSCLC patients and 187 healthy control subjects. RESULTS: Patient characteristics were: 70% male, 77% smokers, 43% adenocarcinoma, and 27% squamous cell carcinoma. Eighty-one percent of the patients had stages III-IV disease. Median age at diagnosis was 60 years and median survival was 13 months. Genotype frequencies of patients and controls both conformed to the Hardy Weinberg equilibrium. The GG genotype significantly correlated with a history of heavy smoking (>or=40 py, P=0.02), and patients with this genotype had a significantly higher cigarette consumption than patients with AA/AG genotypes (P=0.007). The GG genotype also significantly correlated with tumor response or stabilization after a platinum-based first-line chemotherapy (P=0.04). Survival analysis revealed no significant differences among the genotypes. CONCLUSION: Evidence was obtained that the CCND1 A870G gene polymorphism modulates smoking-induced lung cancer risk. Further studies are required to explore the underlying molecular mechanisms and to test the value of this gene polymorphism as a predictor for platinum-sensitivity in NSCLC patients.
Resumo:
The giant cell arteritis and its symptoms are usually non-specific and accompanied with symptoms of polymyalgia rheumatica. As complications of the giant cell arteritis ischemia, infarction or rupture of the damaged vessel can occur. We report on a 56-year-old female patient, who suffered for one year about weight loss, tiredness and intolerance as well as symptoms of polymyalgia rheumatica. Gastroscopy and colonoscopy showed normal findings. In the context of the malignancy search we made a computer tomography and magnet resonance tomography. The data showed an enlargement and an enhancement of the aorta, which led us to the suspicion of a giant cell arteritis. We started immediately with a medical treatment. The biopsy of the arteries temporales supported histological the diagnosis.