954 resultados para Carbon density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent deep-ocean exploration has revealed unexpectedly widespread and diverse coral ecosystems in deep water on continental shelves, slopes, seamounts, and ridge systems around the world. Origin and growth history of these cold-water coral mounds are poorly known, owing to a lack of complete stratigraphic sections through them. Here we show high-resolution oxygen isotope records of planktic foraminifers from the base to the top of Challenger Mound, southwest of Ireland, which was drilled during Integrated Ocean Drilling Program Expedition 307. Challenger Mound began to grow during isotope stage 92 (2.24 million years ago (Ma)), immediately after the onset of Northern Hemisphere glaciation and the initiation of modern stratification in the northeast Atlantic. Mound initiation was likely due to reintroduction of Mediterranean Outflow Water (MOW) and ensuing development of a density gradient with overlying northeastern Atlantic water (NEAW), where organic matter was prone to be stagnated and fueled the coral ecosystem. Coral growth continued for 11 glacial-interglacial cycles until isotopic stage 72 (1.82 Ma) with glacial siliciclastic input from the continental margin. After a long hiatus that separates the lower mound and the upper mound, coral growth restored for a short time in isotope stages 19-18 (0.8-0.7 Ma) in which sediments were either eroded or not deposited during a full glacial stage. The development pattern of the water mass interface between MOW and NEAW might have changed, because of the fluctuations of the MOW production which is responsible for the amplitude in ice volume oscillations from the low-amplitude 41 ka cycles for the lower mound to the high-amplitude 100 ka cycles for the upper mound. The average sedimentation and CaCO3 production rates of the lower mound were evaluated 27 cm/ka and 31.1 g/cm2/ka, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paired radiocarbon measurements on haptophyte biomarkers (alkenones) and on co-occurring tests of planktic foraminifera (Neogloboquadrina dutertrei and Globogerinoides sacculifer) from late glacial to Holocene sediments at core locations ME0005-24JC, Y69-71P, and MC16 from the south-western and central Panama Basin indicate no significant addition of pre-aged alkenones by lateral advection. The strong temporal correspondence between alkenones, foraminifera and total organic carbon (TOC) also implies negligible contributions of aged terrigenous material. Considering controversial evidence for sediment redistribution in previous studies of these sites, our data imply that the laterally supplied material cannot stem from remobilization of substantially aged sediments. Transport, if any, requires syn-depositional nepheloid layer transport and redistribution of low-density or fine-grained components within decades of particle formation. Such rapid and local transport minimizes the potential for temporal decoupling of proxies residing in different grain-size fractions and thus facilitates comparison of various proxies for paleoceanographic reconstructions in this study area. Anomalously old foraminiferal tests from a glacial depth interval of core Y69-71P may result from episodic spillover of fast bottom currents across the Carnegie Ridge transporting foraminiferal sands towards the north.