1000 resultados para Carbon Inoculation
Resumo:
Long-term deterioration in the performance of PEFCs is attributed largely to reduction in active area of the platinum catalyst at cathode, usually caused by carbon-support corrosion. It is found that the use of graphitic carbon as cathode-catalyst support enhances its long-term stability in relation to non-graphitic carbon. This is because graphitic-carbon-supported- Pt (Pt/GrC) cathodes exhibit higher resistance to carbon corrosion in-relation to non-graphitic-carbon-supported- Pt (Pt/Non-GrC) cathodes in PEFCs during accelerated stress test (AST) as evidenced by chronoamperometry and carbon dioxide studies. The corresponding change in electrochemical surface area (ESA), cell performance and charge-transfer resistance are monitored through cyclic voltammetry (CV), cell polarisation and impedance measurements, respectively. The degradation in performance of PEFC with Pt/GrC cathode is found to be around 10% after 70 h of AST as against 77% for Pt/Non-GrC cathode. It is noteworthy that Pt/GrC cathodes can withstand even up to 100 h of AST with nominal effect on their performance. Xray diffraction (XRD), Raman spectroscopy, transmission electron microscopy and cross-sectional field-emission scanning electron microscopy (FE-SEM) studies before and after AST suggest lesser deformation in catalyst layer and catalyst particles for Pt/GrC cathodes in relation to Pt/Non-GrC cathodes, reflecting that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt-particles.
Resumo:
Laminated composite structures are susceptible to damage under impacts with attendant properly degradation. While studies on damage tolerance behaviour are emphasised and the findings reported, the citations correlating impacts with the fracture features are limited. In the present study, therefore, attempts have been made to depict how the transition of the fracture features take place depending on the type and extent of defect introduced onto the carbon-epoxy system. The test specimens were subjected to differing levels of low energy pendulum impacts with a view to have specimens with varying levels of intial impacts history. Into such specimens, additional defect in the form of slits of varying depths were introduced by a mechanical process. The test coupons were then allowed to fail by impact. The fracture surface was studied under scanning electron microscope. The fractographic features that appear, based on the induced/inserted defects, are presented in this paper. It was noticed that the energy absorbed for final fracture could be associated with the defect introduced into the system. It was also observed that the size of the mechanically inserted defect had a significant influence on the features of the fracture surface.
Resumo:
There have been reported attempts of producing Cu based MMCs employing solid phase routes. In this work, copper was reinforced with short carbon fibres by pressure infiltration (squeeze casting) of molten metal through dry-separated carbon fibres. The resulting MMC's microstructure revealed uniform distribution of fibres with minimum amount of clustering. Hardness values are considerably higher than that for the unreinforced matrix. Addition of carbon fibres has brought in strain in the crystal lattice of the matrix, resulting in higher microhardness of MMCs and improved wear resistance. Tensile strength values of MMCs at elevated temperatures are considerably higher than that of the unreinforced matrix processed under identical conditions. (C) 1999 Kluwer Academic Publishers.
Resumo:
Details of the first total syntheses of the sesquiterpenes myltayl-8(12)-ene and 6-epijunicedran-8-ol are described. The aldehyde 13, obtained by Claisen rearrangement of cyclogeraniol, was transformed into the dienones 12 and 18. Boron trifluoride-diethyl ether mediated cyclization and rearrangement transformed the dienones 12 and 18 into the tricyclic ketones 16 and 17, efficiently creating three and four contiguous quaternary carbon atoms, respectively. Wittig methylenation of 16 furnished (+/-)-myltayl-8(12)-ene (11), whereas reduction of the ketone 17 furnished (+/-)-6-epijunicedranol (23).
Resumo:
Passing a H-2-CH4 mixture over oxide spinels containing two transition elements as in Mg0.8MyMz'Al2O4 (M, M' = Fe, Co or Ni, y + z = 0.2) at 1070 degrees C produces small alloy nanoparticles which enable the formation of carbon nanotubes. Surface area measurements are found to be useful for assessing the yield and quality of the nanotubes. Good-quality single-walled nanotubes (SWNTs) have been obtained in high yields with the FeCo alloy nanoparticles, as evidenced by transmission electron microscope images and surface area measurements. The diameter of the SWNTs is in the 0.8-5 nm range, and the multiwalled nanotubes, found occasionally, possess very few graphite layers. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The strikingly different charge transport behaviours in nanocomposites of multiwall carbon nanotubes (MWNTs) and conducting polymer polyethylenedioxythiophene-polystyrene-sulfonic-acid (PEDOT-PSS) at low temperatures are explained by probing their conformational properties using small-angle x-ray scattering (SAXS). The SAXS studies indicate the assembly of elongated PEDOT-PSS globules on the walls of nanotubes, coating them partially, thereby limiting the interaction between the nanotubes in the polymer matrix. This results in a charge transport governed mainly by small polarons in the conducting polymer despite the presence of metallic MWNTs. At T > 4 K, hopping of the charge carriers following one-dimensional variable range hopping is evident which also gives rise to a positive magnetoresistance (MR) with an enhanced localization length (similar to 5 nm) due to the presence of MWNTs. However, at T < 4 K, the observation of an unconventional positive temperature coefficient of resistivity is attributed to small polaron tunnelling. The exceptionally large negative MR observed in this temperature regime is conjectured to be due to the presence of quasi-1D MWNTs that can aid in lowering the tunnelling barrier across the nanotube-polymer boundary resulting in large delocalization.
Resumo:
[1] During a comprehensive aerosol field campaign, simultaneous measurements were made of aerosol spectral optical depths, black carbon mass concentration (M-b), total (M-t) and size segregated aerosol mass concentrations over an urban continental location, Bangalore (13 degreesN, 77 degreesE, 960 m msl), in India. Large amounts of BC were observed; both in absolute terms and fraction of total mass (similar to11%) and submicron mass (similar to23%) implying a significantly low single scatter albedo. The aerosol visible optical depth (tau(p)) was in the range 0.24 to 0.45. Estimated surface forcing is as high as -23 W m(-2) and top of the atmosphere (TOA) forcing is +5 Wm(-2) during relatively cleaner periods (tau(p) similar to 0.24). The net atmospheric absorption translates to an atmospheric heating of similar to0.8 K day(-1) for cleaner periods and similar to1.5 K day(-1) for less cleaner periods (tau(p) similar to 0.45). Our observations raise several issues, which may have impacts to regional climate and monsoon.
Resumo:
Iron nanowires encapsulated in aligned carbon nanotube bundles show interesting magnetic properties. Besides the increased coercivity, Barkhausen jumps with 5 emu/g steps in magnetization are observed due to magnetization reversal or depinning of domains. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Methanol-tolerant Pt-Pd alloy catalysts supported on to carbon with varying Pt:Pd atomic ratios of 1:1, 2:1 and 3:1 are prepared by a novel wet-chemical method and characterized using powder XRD, XPS, FESEM, EDAX and TEM techniques. The optimum atomic weight ratio for Pt to Pd in the carbon-supported alloy catalyst as established by linear-sweep voltammetry (LSV) and cell polarization studies is found to be 2:1. A direct methanol fuel cell (DMFC) employing carbon-supported Pt-Pd (2:1) alloy (Pt-Pd/C) catalyst as the cathode catalyst delivers a peak-power density of 115 mW/cm(2) at 70 degrees C as compared to peak-power density of 60 mW/cm(2) obtained with the DMFC employing carbon-supported Pt (Pt/C) catalyst operating under similar conditions. In the literature, DMFCs operating with Pt-TiO2 (2:1)/C and Pt-Au (2:1)/C methanol-tolerant cathodes are reported to exhibit maximum ORR activity among the group of these methanol-tolerant cathodes with varying catalysts compositions. Accordingly, the present study also provides an effective route to design methanol-tolerant-oxygen-reduction catalysts for DMFCs. (C) 2011 The Electrochemical Society. DOI: 10.1149/1.3596542] All rights reserved.
Resumo:
Reduction of carbon emissions is of paramount importance in the context of global warming. Countries and global companies are now engaged in understanding systematic ways of achieving well defined emission targets. In fact, carbon credits have become significant and strategic instruments of finance for countries and global companies. In this paper, we formulate and suggest a solution to the carbon allocation problem, which involves determining a cost minimizing allocation of carbon credits among different emitting agents. We address this challenge in the context of a global company which is faced with the challenge of determining an allocation of carbon credit caps among its divisions in a cost effective way. The problem is formulated as a reverse auction problem where the company plays the role of a buyer or carbon planning authority and the different divisions within the company are the emitting agents that specify cost curves for carbon credit reductions. Two natural variants of the problem: (a) with unlimited budget and (b) with limited budget are considered. Suitable assumptions are made on the cost curves and in each of the two cases we show that the resulting problem formulation is a knapsack problem that can be solved optimally using a greedy heuristic. The solution of the allocation problem provides critical decision support to global companies engaged seriously in green programs.
Resumo:
Single-wall carbon nanotubes (SWNTs) are fascinating systems exhibiting many novel physical properties. In this paper, we give a brief review of the structural, electronic, vibrational, and mechanical properties of carbon nanotubes. In situ resonance Raman scattering of SWNTs investigated under electrochemical biasing demonstrates that the intensity of the radial breathing mode varies significantly in a nonmonotonic manner as a function of the cathodic bias voltage, but does not change appreciably under anodic bias. These results can be quantitatively understood in terms of the changes in the energy gaps between the 1 D van Hove singularities in the electron density of states, arising possibly due to the alterations in the overlap integral of pi bonds between the p-orbitals of the adjacent carbon atoms. In the second part of this paper, we review our high-pressure X-ray diffraction results, which show that the triangular lattice of the carbon nanotube bundles continues to persist up to similar to10 GPa. The lattice is seen to relax just before the phase transformation, which is observed at similar to10 GPa. Further, our results display the reversibility of the 2D lattice symmetry even after compression up to 13 GPa well beyond the 5 GPa value observed recently. These experimental results explicitly validate the predicted remarkable mechanical resilience of the nanotubes.
Resumo:
Commercially important flavor esters of isoamyl alcohol, catalyzed by crude hog pancreas lipase (HPL), were synthesized under solvent-free conditions and in supercritical carbon dioxide. The esters synthesized were isoamyl acetate, isoamyl propionate, isoamyl butyrate, and isoamyl octanoate. Very low yields (3-4%) of isoamyl acetate were obtained, but high yields for the other three esters were obtained under both supercritical and solvent-free conditions. The yields of esters of the even-carbon acids, isoamyl acetate, butyrate, and octanoate, increased with increasing chain length, whereas the yield of isoamyl propionate was higher than that of isoamyl butyrate. The optimum temperature of the reaction was higher under supercritical conditions (45 degreesC) than under solvent-free conditions (35-40 degreesC). The effects of other parameters such as alcohol concentration, water concentration, and enzyme loading were investigated. An increase in the water concentration decreased the conversion significantly in supercritical carbon dioxide but not under solvent-free conditions. The optimum ratio of alcohol to acid was dependent on the extent of inhibition by the acid. Although providing a higher apparent yield by being run in a highly concentrated medium, the overall conversion under solvent-free conditions was lower than that under supercritical conditions for similar enzyme concentrations, indicating that the synthesis of esters in supercritical carbon dioxide might be a viable option.
Resumo:
We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well.
Resumo:
We report the successful synthesis of crystalline carbon nitride by chemical vapor deposition of certain nitrogen containing organic precursors. The precursor is heated and the vapors enter the hot deposition zone where they are pyrolysed and deposited in the form of thin films over pretreated substrates. The powder x-ray diffraction analysis shows clear peaks corresponding to the carbon nitride crystals of tetragonal form in addition to a broad hump corresponding to the amorphous nitrogenated carbon. The crystallites size is similar to300Angstrom and the volume fraction of the crystallites is about similar to7%. The optimum conditions of preparation are found out. The Infrared spectra of these samples also suggest the formation of Carbon Nitride crystals. The analysis reconfirms that the material contains crystallites of Carbon Nitride embedded in an amorphous matrix of nitrogenated carbon. Further the material is characterized by C,H,N elemental analysis, EDX and Raman spectra. Since all the above analyses probe the bulk material, the background amorphous matrix in this case, expecting a clear evidence of nanometer sized crystallites from these tests are unlikely. Attempts are being made to increase the yield of these carbon nitride crystallites.