974 resultados para Capillary electrochromatography
Resumo:
Miniaturized analytical devices, such as heated nebulizer (HN) microchips studied in this work, are of increasing interest owing to benefits like faster operation, better performance, and lower cost relative to conventional systems. HN microchips are microfabricated devices that vaporize liquid and mix it with gas. They are used with low liquid flow rates, typically a few µL/min, and have previously been utilized as ion sources for mass spectrometry (MS). Conventional ion sources are seldom feasible at such low flow rates. In this work HN chips were developed further and new applications were introduced. First, a new method for thermal and fluidic characterization of the HN microchips was developed and used to study the chips. Thermal behavior of the chips was also studied by temperature measurements and infrared imaging. An HN chip was applied to the analysis of crude oil – an extremely complex sample – by microchip atmospheric pressure photoionization (APPI) high resolution mass spectrometry. With the chip, the sample flow rate could be reduced significantly without loss of performance and with greatly reduced contamination of the MS instrument. Thanks to its suitability to high temperature, microchip APPI provided efficient vaporization of nonvolatile compounds in crude oil. The first microchip version of sonic spray ionization (SSI) was presented. Ionization was achieved by applying only high (sonic) speed nebulizer gas to an HN microchip. SSI significantly broadens the range of analytes ionizable with the HN chips, from small stable molecules to labile biomolecules. The analytical performance of the microchip SSI source was confirmed to be acceptable. The HN microchips were also used to connect gas chromatography (GC) and capillary liquid chromatography (LC) to MS, using APPI for ionization. Microchip APPI allows efficient ionization of both polar and nonpolar compounds whereas with the most popular electrospray ionization (ESI) only polar and ionic molecules are ionized efficiently. The combination of GC with MS showed that, with HN microchips, GCs can easily be used with MS instruments designed for LC-MS. The presented analytical methods showed good performance. The first integrated LC–HN microchip was developed and presented. In a single microdevice, there were structures for a packed LC column and a heated nebulizer. Nonpolar and polar analytes were efficiently ionized by APPI. Ionization of nonpolar and polar analytes is not possible with previously presented chips for LC–MS since they rely on ESI. Preliminary quantitative performance of the new chip was evaluated and the chip was also demonstrated with optical detection. A new ambient ionization technique for mass spectrometry, desorption atmospheric pressure photoionization (DAPPI), was presented. The DAPPI technique is based on an HN microchip providing desorption of analytes from a surface. Photons from a photoionization lamp ionize the analytes via gas-phase chemical reactions, and the ions are directed into an MS. Rapid analysis of pharmaceuticals from tablets was successfully demonstrated as an application of DAPPI.
Resumo:
Two reliable small-plant bioassays were developed using tissue-cultured banana, resulting in consistent symptom expression and infection by Fusarium oxysporum f. sp. cubense (Foc). One bioassay was based on providing a constant watertable within a closed pot and the second used free-draining pots. Culture medium for spore generation influenced infectivity of Foc. Inoculation of potted banana by drenching potting mix with a conidial suspension, consisting mostly of microconidia, few macroconidia and no chlamydospores, generated from one-quarter-strength potato dextrose agar + streptomycin sulfate, resulted in inconsistent infection. When a conidial suspension that consisted of all three spore types, microconidia, macroconidia and chlamydospores, prepared from spores generated on carnation leaf agar was used, all plants became infected, indicating that the spore type present in conidial suspensions may contribute to inconsistency of infection. Inconsistency of infection was not due to loss of virulence of the pathogen in culture. Millet grain precolonised by Foc as a source of inoculum resulted in consistent infection between replicate plants. Sorghum was not a suitable grain for preparation of inoculum as it was observed to discolour roots and has the potential to stunt root growth, possibly due to the release of phytotoxins. For the modified closed-pot system, a pasteurised potting mix consisting of equal parts of bedding sand, perlite and vermiculite plus 1 g/L Triabon slow release fertiliser was suitable for plant growth and promoted capillary movement of water through the potting mix profile. A suitable potting mix for the free-draining pot system was also developed.
Resumo:
The ability of various synthetic peptide analogs of. Formyl-Met-Leu-Phe to induce chemotaxis in bull sperm is compared using an inverted capillary assay. The formyl group is essential for chemotactic activity and corresponding t-butyloxycarbonyl tripeptides are inactive. Sequence analogs, Formyl-Met-Phe-Leu, Formyl-Leu-Met-Phe and Formyl-Leu-Phe-Met are active. Replacement of Met and Leu by Pro does not diminish activity. Formyl-Met-Leu-Phe-NH2 is active suggesting that electrostatic interactions involving the carboxyl group may be unimportant in receptor interactions. The studies establish the importance of an amino terminal formyl group and a sequence of at least three hydrophobic residues, for inducing sperm chemotaxis.
Resumo:
Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and deformed shapes, when flowing through these capillaries with diameters varying between 5 10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the RBCs directly influences on the motion and the deformation of the RBCs. However, most of the previous numerical studies have explored the motion and deformation of a single RBC when the interaction between RBCs has been neglected. In this study, motion and deformation of two 2D (two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly model the interactions between RBCs, only two RBCs are considered in this study even though blood with RBCs is continuously flowing through the blood vessels. A spring network based on the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction between RBCs has significant influence on their motion and deformation.
Resumo:
A simple mathematical model depicting blood flow in the capillary is developed with an emphasis on the permeability property of the blood vessel based on Starling's hypothesis. In this study the effect of inertia has been neglected in comparison with the viscosity on the basis of the smallness of the Reynolds number of the flow in the capillary. The capillary blood vessel is approximated by a circular cylindrical tube with a permeable wall. The blood is represented by a couple stress fluid. With such an ideal model the velocity and pressure fields are determined. It is shown that an increase in the couple stress parameter increases the resistance to the flow and thereby decreases the volume rate flow. A comparison of the results with those of the Newtonian case has also been made.
Resumo:
Objectives of this study were to determine secular trends of diabetes prevalence in China and develop simple risk assessment algorithms for screening individuals with high-risk for diabetes or with undiagnosed diabetes in Chinese and Indian adults. Two consecutive population based surveys in Chinese and a prospective study in Mauritian Indians were involved in this study. The Chinese surveys were conducted in randomly selected populations aged 20-74 years in 2001-2002 (n=14 592) and 35-74 years in 2006 (n=4416). A two-step screening strategy using fasting capillary plasma glucose (FCG) as first-line screening test followed by standard 2-hour 75g oral glucose tolerance tests (OGTTs) was applied to 12 436 individuals in 2001, while OGTTs were administrated to all participants together with FCG in 2006 and to 2156 subjects in 2002. In Mauritius, two consecutive population based surveys were conducted in Mauritian Indians aged 20-65 years in 1987 and 1992; 3094 Indians (1141 men), who were not diagnosed as diabetes at baseline, were reexamined with OGTTs in 1992 and/or 1998. Diabetes and pre-diabetes was defined following 2006 World Health Organization/ International Diabetes Federation Criteria. Age-standardized, as well as age- and sex-specific, prevalence of diabetes and pre-diabetes in adult Chinese was significantly increased from 12.2% and 15.4% in 2001 to 16.0% and 21.2% in 2006, respectively. A simple Chinese diabetes risk score was developed based on the data of Chinese survey 2001-2002 and validated in the population of survey 2006. The risk scores based on β coefficients derived from the final Logistic regression model ranged from 3 – 32. When the score was applied to the population of survey 2006, the area under operating characteristic curve (AUC) of the score for screening undiagnosed diabetes was 0.67 (95% CI, 0.65-0.70), which was lower than the AUC of FCG (0.76 [0.74-0.79]), but similar to that of HbA1c (0.68 [0.65-0.71]). At a cut-off point of 14, the sensitivity and specificity of the risk score in screening undiagnosed diabetes was 0.84 (0.81-0.88) and 0.40 (0.38-0.41). In Mauritian Indian, body mass index (BMI), waist girth, family history of diabetes (FH), and glucose was confirmed to be independent risk predictors for developing diabetes. Predicted probabilities for developing diabetes derived from a simple Cox regression model fitted with sex, FH, BMI and waist girth ranged from 0.05 to 0.64 in men and 0.03 to 0.49 in women. To predict the onset of diabetes, the AUC of the predicted probabilities was 0.62 (95% CI, 0.56-0.68) in men and 0.64(0.59-0.69) in women. At a cut-off point of 0.12, the sensitivity and specificity was 0.72(0.71-0.74) and 0.47(0.45-0.49) in men; and 0.77(0.75-0.78) and 0.50(0.48-0.52) in women, respectively. In conclusion, there was a rapid increase in prevalence of diabetes in Chinese adults from 2001 to 2006. The simple risk assessment algorithms based on age, obesity and family history of diabetes showed a moderate discrimination of diabetes from non-diabetes, which may be used as first line screening tool for diabetes and pre-diabetes, and for health promotion purpose in Chinese and Indians.
Resumo:
The structures of (1→3),(1→4)-β-D-glucans of oat bran, whole-grain oats and barley and processed foods were analysed. Various methods of hydrolysis of β-glucan, the content of insoluble fibre of whole grains of oats and barley and the solution behaviour of oat and barley β-glucans were studied. The isolated soluble β-glucans of oat bran and whole-grain oats and barley were hydrolysed with lichenase, an enzyme specific for (1→3),(1→4)-β-D-β-glucans. The amounts of oligosaccharides produced from bran were analysed with capillary electrophoresis and those from whole-grains with high-performance anion-exchange chromatography with pulse-amperometric detection. The main products were 3-O-β-cellobiosyl-D-glucose and 3-O-β-cellotriosyl-D-glucose, the oligosaccharides which have a degree of polymerisation denoted by DP3 and DP4. Small differences were detected between soluble and insoluble β-glucans and also between β-glucans of oats and barley. These differences can only be seen in the DP3:DP4 ratio which was higher for barley than for oat and also higher for insoluble than for soluble β-glucan. A greater proportion of barley β-glucan remained insoluble than of oat β-glucan. The molar masses of soluble β-glucans of oats and barley were the same as were those of insoluble β-glucans of oats and barley. To analyse the effects of cooking, baking, fermentation and drying, β-glucan was isolated from porridge, bread and fermentate and also from their starting materials. More β-glucan was released after cooking and less after baking. Drying decreased the extractability for bread and fermentate but increased it for porridge. Different hydrolysis methods of β-glucan were compared. Acid hydrolysis and the modified AOAC method gave similar results. The results of hydrolysis with lichenase gave higher recoveries than the other two. The combination of lichenase hydrolysis and high-performance anion-exchange chromatography with pulse-amperometric detection was found best for the analysis of β-glucan content. The content of insoluble fibre was higher for barley than for oats and the amount of β-glucan in the insoluble fibre fraction was higher for oats than for barley. The flow properties of both water and aqueous cuoxam solutions of oat and barley β-glucans were studied. Shear thinning was stronger for the water solutions of oat β-glucan than for barley β-glucan. In aqueous cuoxam shear thinning was not observed at the same concentration as in water but only with high concentration solutions. Then the viscosity of barley β-glucan was slightly higher than that of oat β-glucan. The oscillatory measurements showed that the crossover point of the G´ and G´´ curves was much lower for barley β-glucan than for oat β-glucan indicating a higher tendency towards solid-like behaviour for barley β-glucan than for oat β-glucan.
Resumo:
Rhipicephalus micro plus is an important bovine ectoparasite, widely distributed in tropical and subtropical regions of the world causing large economic losses to the cattle industry. Its success as an ectoparasite is associated with its capacity to disarm the antihemostatic and anti-inflammatory reactions of the host. Serpins are protease inhibitors with an important role in the modulation of host-parasite interactions. The cDNA that encodes for a R. microplus serpin was isolated by RACE and subsequently cloned into the pPICZ alpha A vector. Sequence analysis of the cDNA and predicted amino acid showed that this cDNA has a conserved serpin domain. B- and T-cell epitopes were predicted using bioinformatics tools. The recombinant R. microplus serpin (rRMS-3) was secreted into the culture media of Pichia pastoris after methanol induction at 0.2 mg l(-1) qRT-PCR expression analysis of tissues and life cycle stages demonstrated that RMS-3 was mainly expressed in the salivary glands of female adult ticks. Immunological recognition of the rRMS-3 and predicted B-cell epitopes was tested using tick-resistant and susceptible cattle sera. Only sera from tick-resistant bovines recognized the B-cell epitope AHYNPPPPIEFT (Seq7). The recombinant RMS-3 was expressed in P. pastoris, and ELISA screening also showed higher recognition by tick-resistant bovine sera. The results obtained suggest that RMS-3 is highly and specifically secreted into the bite site of R. microplus feeding on tick-resistant bovines. Capillary feeding of semi-engorged ticks with anti-AHYNPPPPIEFT sheep sera led to an 81.16% reduction in the reproduction capacity of R. microplus. Therefore, it is possible to conclude that R. microplus serpin (RMS-3) has an important role in the host-parasite interaction to overcome the immune responses in resistant cattle. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
In Africa various species of Combretum, Terminalia and Pteleopsis are used in traditional medicine. Despite of this, some species of these genera have still not been studied for their biological effects to validate their traditional uses. The aim of this work has been to document the ethnomedicinal uses of several species of Combretum and Terminalia in Mbeya region, south-western Tanzania, and to use this information for finding species with good antimicrobial and cytotoxic potential. During a five weeks expedition to Tanzania in spring 1999 sixteen different species of Combretum and Terminalia, as well as Pteleopsis myrtifolia were collected from various locations in the districts of Mbeya, Iringa and Dar-es-Salaam. Traditional healers in seven different villages in the Mbeya region were interviewed in Swahili and Nyakyusa on the medicinal uses of Combretum and Terminalia species shown to them. A questionnaire was used during the interviews. The results of the interviews correlated well between different villages, the same species being used in similar ways in different villages. Of the ten species shown to the healers six were frequently used for treatment of skin diseases, bacterial infections, diarrhea, oedema and wounds. The dried plants were most commonly prepared into hot water decoctions or mixed into maize porridge, Ugali. Infusions made from dried or fresh plant material were also common. Wounds and topical infections were treated with ointments made from the dried plant material mixed with sheep fat. Twenty-one extracts of six species of Combretum and four of Terminalia, collected from Tanzania, were screened for their antibacterial effects against two gram-negative and five gram-positive bacteria, as well as the yeast, Candida albicans, using an agar diffusion method. Most of the screened plants showed substantial antimicrobial activity. A methanolic root extract of T. sambesiaca showed the most potent antibacterial effects of all the plant species screened, and gave a MIC value of 0.9 mg/ml against Enterobacter aerogenes. Also root extracts of T. sericea and T. kaiserana gave excellent antimicrobial effects, and notably a hot water extract of T. sericea was as potent as extracts of this species made from EtOH and MeOH. Thus, the traditional way of preparing T. sericea into hot water decoctions seems to extract antimicrobial compounds. Thirty-five extracts of five species of Terminalia, ten of Combretum and Pteleopsis myrtifolia were screened for their antifungal effects against five species of yeast (Candida spp.) and Cryptococcus neoformans. The species differed from each other to their antifungal effects, some being very effective whereas others showed no antifungal effects. The most effective extracts showed antifungal effects comparable to the standard antibiotics itraconazol and amphotericin B. Species of Terminalia gave in general stronger antifungal effects than those of Combretum. The best effects were obtained with methanolic root extracts of T. sambesiaca, T. sericea and T. kaiserana, and this investigation indicates that decoctions of these species might be used for treatment of HIV-related fungal infections. Twenty-seven crude extracts of eight species of Combretum, five of Terminalia and Pteleopsis myrtifolia were evaluated for their cytotoxic effects against human cancer cell lines (HeLa, cervical carcinoma; MCF 7, breast carcinoma, T 24 bladder carcinoma) and one endothelial cell line (BBCE, bovine brain capillary endothelial cells). The most outstanding effects were obtained with a leaf extract of Combretum fragrans, which nearly totally inhibited the proliferation of T 24 and HeLa cells at a concentration of 25 ug/ml and inhibited 60 % of the growth of the HeLa cells at a concentration of 4.3 ug/ml. The species of Terminalia were less cytotoxically potent than the Combretum species, although T. sericea and T. sambesiaca gave good cytotoxic effects (< 30 % proliferation). In summary this study indicates that some of the species of Terminalia, Combretum and Pteleopsis, used in Tanzanian traditional medicine, are powerful inhibitors of both microbial and cancer cell growth. In depth studies would be needed to find the active compounds behind these biological activities.
Resumo:
We have shown previously that the Ca2+-specific fluorescent dyes chlortetracycline (CTC) and indo-1/AM can be used to distinguish between prestalk and prespore cells in Dictyostelium discoideum at a very early stage. In the present study, pre- and post-aggregative amoebae of Dictyostelium discoideum were labelled with CTC or indo-1 and their fluorescence monitored after being drawn into a fine glass capillary. The cells rapidly form two zones of Ca2+-CTC or Ca2+-indo-1 fluorescence. Anterior (air side) cells display a high level of fluorescence; the level drops in the middle portion of the capillary and rises again to a lesser extent in the posteriormost cells (oil side). When bounded by air on both sides, the cells display high fluorescence at both ends. When oil is present at both ends of the capillary, there is little fluorescence except for small regions at the ends. These outcomes are evident within a couple of minutes of the start of the experiment and the fluorescence pattern intensifies over the course of time. By using the indicator neutral red, as well as with CTC and indo-1, we show that a band displaying strong fluorescence moves away from the anterior end before stabilizing at the anterior-posterior boundary. We discuss our findings in relation to the role of Ca2+ in cell-type differentiation in Dictyostelium discoideum.
Resumo:
The blood vascular system is a closed circulatory system, responsible for delivering oxygen and nutrients to the tissues. In contrast, the lymphatic vascular system is a blind-ended transport system that collects the extravasated tissue fluid from the capillary beds, and transports it back to the blood circulation. Failure in collecting or transporting the lymph, due to defects in the lymphatic vasculature, leads to accumulation of extra fluid in the tissues, and consequently to tissue swelling lymphedema. The two vascular systems function in concert. They are structurally related, but their development is regulated by separate, however overlapping, molecular mechanisms. During embryonic development, blood vessels are formed by vasculogenesis and angiogenesis, processes largely mediated by members of the vascular endothelial growth factor (VEGF) family and their tyrosine kinase receptors. The lymphatic vessels are formed after the cardiovascular system is already functional. This process, called lymphangiogenesis, is controlled by distinct members of the VEGF family, together with the transcription factors Prox1 and Sox18. After the primary formation of the vessels, the vasculature needs to mature and remodel into a functional network of hierarchically organized vessels: the blood vasculature into arteries, capillaries and veins; and the lymphatic vasculature into lymphatic capillaries, responsible for the uptake of the extravasated fluid from the tissues, and collecting vessels, responsible for the transport of the lymph back to the blood circulation. A major event in the maturation of the lymphatic vasculature is the formation of collecting lymphatic vessels. These vessels are characterized by the presence of intraluminal valves, preventing backflow of the lymph, and a sparse coverage of smooth muscle cells, which help in pumping the lymph forward. In our study, we have characterized the molecular and morphological events leading to formation of collecting lymphatic vessels. We found that this process is regulated cooperatively by the transcription factors Foxc2 and NFATc1. Mice lacking either Foxc2 or active NFATc1 fail to remodel the primary lymphatic plexus into functional lymphatic capillaries and collecting vessels. The resulting vessels lack valves, display abnormal expression of lymphatic molecules, and are hyperplastic. Moreover, the lymphatic capillaries show aberrant sprouting, and are abnormally covered with smooth muscle cells. In humans, mutations in FOXC2 lead to Lymphedema-Distichiasis (LD), a disabling disease characterized by swelling of the limbs due to insufficient lymphatic function. Our results from Foxc2 mutant mice and LD patients indicate that the underlying cause for lymphatic failure in LD is agenesis of collecting lymphatic valves and aberrant recruitment of periendothelial cells and basal lamina components to lymphatic capillaries. Furthermore, we show that liprin β1, a poorly characterized member of the liprin family of cytoplasmic proteins, is highly expressed in lymphatic endothelial cells in vivo, and is required for lymphatic vessel integrity. These data highlight the important role of FOXC2, NFATc1 and liprin β1 in the regulation of lymphatic development, specifically in the maturation and formation of the collecting lymphatic vessels. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results also suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.
Resumo:
Background The estimated likelihood of lower limb amputation is 10 to 30 times higher amongst people with diabetes compared to those without diabetes. Of all non-traumatic amputations in people with diabetes, 85% are preceded by a foot ulcer. Foot ulceration associated with diabetes (diabetic foot ulcers) is caused by the interplay of several factors, most notably diabetic peripheral neuropathy (DPN), peripheral arterial disease (PAD) and changes in foot structure. These factors have been linked to chronic hyperglycaemia (high levels of glucose in the blood) and the altered metabolic state of diabetes. Control of hyperglycaemia may be important in the healing of ulcers. Objectives To assess the effects of intensive glycaemic control compared to conventional control on the outcome of foot ulcers in people with type 1 and type 2 diabetes. Search methods In December 2015 we searched: The Cochrane Wounds Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE; EBSCO CINAHL; Elsevier SCOPUS; ISI Web of Knowledge Web of Science; BioMed Central and LILACS. We also searched clinical trial databases, pharmaceutical trial databases and current international and national clinical guidelines on diabetes foot management for relevant published, non-published, ongoing and terminated clinical trials. There were no restrictions based on language or date of publication or study setting. Selection criteria Published, unpublished and ongoing randomised controlled trials (RCTs) were considered for inclusion where they investigated the effects of intensive glycaemic control on the outcome of active foot ulcers in people with diabetes. Non randomised and quasi-randomised trials were excluded. In order to be included the trial had to have: 1) attempted to maintain or control blood glucose levels and measured changes in markers of glycaemic control (HbA1c or fasting, random, mean, home capillary or urine glucose), and 2) documented the effect of these interventions on active foot ulcer outcomes. Glycaemic interventions included subcutaneous insulin administration, continuous insulin infusion, oral anti-diabetes agents, lifestyle interventions or a combination of these interventions. The definition of the interventional (intensive) group was that it should have a lower glycaemic target than the comparison (conventional) group. Data collection and analysis All review authors independently evaluated the papers identified by the search strategy against the inclusion criteria. Two review authors then independently reviewed all potential full-text articles and trials registry results for inclusion. Main results We only identified one trial that met the inclusion criteria but this trial did not have any results so we could not perform the planned subgroup and sensitivity analyses in the absence of data. Two ongoing trials were identified which may provide data for analyses in a later version of this review. The completion date of these trials is currently unknown. Authors' conclusions The current review failed to find any completed randomised clinical trials with results. Therefore we are unable to conclude whether intensive glycaemic control when compared to conventional glycaemic control has a positive or detrimental effect on the treatment of foot ulcers in people with diabetes. Previous evidence has however highlighted a reduction in risk of limb amputation (from various causes) in people with type 2 diabetes with intensive glycaemic control. Whether this applies to people with foot ulcers in particular is unknown. The exact role that intensive glycaemic control has in treating foot ulcers in multidisciplinary care (alongside other interventions targeted at treating foot ulcers) requires further investigation.
Resumo:
Backround and Purpose The often fatal (in 50-35%) subarachnoid hemorrhage (SAH) caused by saccular cerebral artery aneurysm (SCAA) rupture affects mainly the working aged population. The incidence of SAH is 10-11 / 100 000 in Western countries and twice as high in Finland and Japan. The estimated prevalence of SCAAs is around 2%. Many of those never rupture. Currently there are, however, no diagnostic methods to identify rupture-prone SCAAs from quiescent, (dormant) ones. Finding diagnostic markers for rupture-prone SCAAs is of primary importance since a SCAA rupture has such a sinister outcome, and all current treatment modalities are associated with morbidity and mortality. Also the therapies that prevent SCAA rupture need to be developed to as minimally invasive as possible. Although the clinical risk factors for SCAA rupture have been extensively studied and documented in large patient series, the cellular and molecular mechanisms how these risk factors lead to SCAA wall rupture remain incompletely known. Elucidation of the molecular and cellular pathobiology of the SCAA wall is needed in order to develop i) novel diagnostic tools that could identify rupture-prone SCAAs or patients at risk of SAH, and to ii) develop novel biological therapies that prevent SCAA wall rupture. Materials and Methods In this study, histological samples from unruptured and ruptured SCAAs and plasma samples from SCAA carriers were compared in order to identify structural changes, cell populations, growth factor receptors, or other molecular markers that would associate with SCAA wall rupture. In addition, experimental saccular aneurysm models and experimental models of mechanical vascular injury were used to study the cellular mechanisms of scar formation in the arterial wall, and the adaptation of the arterial wall to increased mechanical stress. Results and Interpretation Inflammation and degeneration of the SCAA wall, namely loss of mural cells and degradation of the wall matrix, were found to associate with rupture. Unruptured SCAA walls had structural resemblance with pads of myointimal hyperplasia or so called neointima that characterizes early atherosclerotic lesions, and is the repair and adaptation mechanism of the arterial wall after injury or increased mechanical stress. As in pads of myointimal hyperplasia elsewhere in the vasculature, oxidated LDL was found in the SCAA walls. Immunity against OxLDL was demonstrated in SAH patients with detection of circulating anti-oxidized LDL antibodies, which were significantly associated with the risk of rupture in patients with solitary SCAAs. Growth factor receptors associated with arterial wall remodeling and angiogenesis were more expressed in ruptured SCAA walls. In experimental saccular aneurysm models, capillary growth, arterial wall remodeling and neointima formation were found. The neointimal cells were shown to originate from the experimental aneurysm wall with minor contribution from the adjacent artery, and a negligible contribution of bone marrow-derived neointimal cells. Since loss of mural cells characterizes ruptured human SCAAs and likely impairs the adaptation and repair mechanism of ruptured or rupture-prone SCAAs, we investigated also the hypothesis that bone marrow-derived or circulating neointimal precursor cells could be used to enhance neointima formation and compensate the impaired repair capacity in ruptured SCAA walls. However, significant contribution of bone marrow cells or circulating mononuclear cells to neointima formation was not found.
Resumo:
The aims of this Thesis was to evaluate the role of proangiogenic placental growth factor (PlGF), antiangiogenic endostatin and lymphangiogenic vascular endothelial growth factor (VEGF) -C as well as the receptors vascular endothelial growth factor receptor (VEGFR) -2 and VEGFR-3 during lung development and in development of lung injury in preterm infants. The studied growth factors were selected due to a close relationship with VEGF-A; a proangiogenic growth factor important in normal lung angiogenesis and lung injury in preterm infants. The thesis study consists of three analyses. I: Lung samples from fetuses, preterm and term infants without lung injury, as well as preterm infants with acute and chronic lung injury were stained by immunohistochemistry for PlGF, endostatin, VEGF-C, VEGFR-2 and VEGFR-3. II: Tracheal aspirate fluid (TAF) was collected in the early postnatal period from a patient population consisting of 59 preterm infants, half developing bronchopulmonary dysplasia (BPD) and half without BPD. PlGF, endostatin and VEGF-C concentrations were measured by commercial enzyme-linked immunosorbent assay (ELISA). III: Cord plasma was collected from very low birth weight (VLBW) (n=92) and term (n=48) infants in conjuncture with birth and endostatin concentrations were measured by ELISA. I: All growth factors and receptors studied were consistently stained in immunohistochemistry throughout development. For endostatin in early respiratory distress syndrome (RDS), no alveolar epithelial or macrophage staining was seen, whereas in late RDS and BPD groups, both alveolar epithelium and macrophages stained positively in approximately half of the samples. VEGFR-2 staining was fairly consistent, except for the fact that capillary endothelial staining in the BPD group was significantly decreased. II: During the first postnatal week in TAF mean PlGF concentrations were stable whereas mean endostatin and VEGF-C concentrations decreased. Higher concentrations of endostatin and VEGF-C correlated with lower birth weight (BW) and associated with administration of antenatal betamethasone. Parameters reflecting prenatal lung inflammation associated with lower PlGF, endostatin and VEGF-C concentrations. A higher mean supplemental fraction of inspired oxygen during the first 2 postnatal weeks (FiO2) correlated with higher endostatin concentrations. III: Endostatin concentrations in term infants were significantly higher than in VLBW infants. In VLBW infants higher endostatin concentrations associated with the development of BPD, this association remained significant after logistic regression analysis. We conclude that PlGF, endostatin and VEGF-C all have a physiological role in the developing lung. Also, the VEGFR-2 expression profile seems to reflect the ongoing differentiation of endothelia during development. Both endostatin and VEGFR-2 seem to be important in the development of BPD. During the latter part of the first postnatal week, preterm infants developing BPD have lower concentrations of VEGF-A in TAF. Our findings of disrupted VEGFR-2 staining in capillary and septal endothelium seen in the BPD group, as well as the increase in endostatin concentrations both in TAF and cord plasma associated with BPD, seem to strengthen the notion that there is a shift in the angiogenic balance towards a more antiangiogenic environment in BPD. These findings support the vascular hypothesis of BPD.
Resumo:
Congenital nephrotic syndrome of the Finnish type (NPHS1, CNF) is an autosomal recessive disease, enriched in the Finnish population. NPHS1 is caused by a mutation in the NPHS1 gene. This gene encodes for nephrin, which is a major structural component of the slit diaphragm connecting podocyte foot processes in the glomerular capillary wall. In NPHS1, the genetic defect in nephrin leads to heavy proteinuria already in the newborn period. Finnish NPHS1 patients are nephrectomized at infancy, and after a short period of dialysis the patients receive a kidney transplant, which is the only curative therapy for the disease. In this thesis, we examined the cellular and molecular mechanisms leading to the progression of glomerulosclerosis and tubulointerstitial fibrosis in NPHS1 kidneys. Progressive mesangial expansion in NPHS1 kidneys is caused by mesangial cell hyperplasia and the accumulation of extracellular matrix proteins. Expansion of the extracellular matrix was caused by the normal mesangial cell component, collagen IV. However, no significant changes in mesangial cell phenotype or extracellular matrix component composition were observed. Endotheliosis was the main ultrastructural lesion observed in the endothelium of NPHS1 glomeruli. The abundant expression of vascular endothelial growth factor and its transcription factor hypoxia inducible factor-1 alpha were in accordance with the preserved structure of the endothelium in NPHS1 kidneys. Hypoperfusion of peritubular capillaries and tubulointerstitial hypoxia were evident in NPHS1 kidneys, indicating that these may play an important role in the rapid progression of fibrosis in the kidneys of NPHS1 patients. Upregulation of Angiotensin II was obvious, emphasizing its role in the pathophysiology of NPHS1. Excessive oxidative stress was evident in NPHS1 kidneys, manifested as an increase expression of p22phox, superoxide production, lipid oxide peroxidation and reduced antioxidant activity. In conclusion, our data indicate that mesangial cell proliferation and the accumulation of extracellular matrix accumulation are associated with the obliteration of glomerular capillaries, causing the reduction of circulation in peritubular capillaries. The injury and rarefaction of peritubular capillaries result in impairment of oxygen and nutrient delivery to the tubuli and interstitial cells, which correlates with the fibrosis, tubular atrophy and oxidative stress observed in NPHS1 kidneys.