966 resultados para Caco-2 cell


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of this study was to determine whether beta(1)-adrenergic receptor (AR) and beta(2)-AR differ in regulating cardiomyocyte survival and apoptosis and, if so, to explore underlying mechanisms. One potential mechanism is that cardiac beta(2)-AR can activate both G(s) and G(i) proteins, whereas cardiac beta(1)-AR couples only to G(s). To avoid complicated crosstalk between beta-AR subtypes, we expressed beta(1)-AR or beta(2)-AR individually in adult beta(1)/beta(2)-AR double knockout mouse cardiac myocytes by using adenoviral gene transfer. Stimulation of beta(1)-AR, but not beta(2)-AR, markedly induced myocyte apoptosis, as indicated by increased terminal deoxynucleotidyltransferase-mediated UTP end labeling or Hoechst staining positive cells and DNA fragmentation. In contrast, beta(2)-AR (but not beta(1)-AR) stimulation elevated the activity of Akt, a powerful survival signal; this effect was fully abolished by inhibiting G(i), G(beta gamma), or phosphoinositide 3 kinase (PI3K) with pertussis toxin, beta ARK-ct (a peptide inhibitor of G(beta gamma)), or LY294002, respectively. This indicates that beta(2)-AR activates Akt via a G(i)-G(beta gamma)-PI3K pathway. More importantly, inhibition of the G(i)-G(beta gamma)-PI3K-Akt pathway converts beta(2)-AR signaling from survival to apoptotic. Thus, stimulation of a single class of receptors, beta(2)-ARs, elicits concurrent apoptotic and survival signals in cardiac myocytes. The survival effect appears to predominate and is mediated by the G(i)-G(beta gamma)-PI3K-Akt signaling pathway.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vascular smooth muscle cell (VSMC) behaviour and phenotypic modulation is critical to vessel repair following damage, and the progression of various cardiovascular diseases. The second messenger cyclic adenosine monophosphosphate (cAMP) plays a key role in VSMC function under the synthetic/activated phenotype, which is typically associated with unhealthy cell behaviour. Consequently, cAMP signaling is often targeted in attempts to impact several pathological diseases, including atherosclerosis, restenosis, and pulmonary arterial hypertension (PAH). The cyclic nucleotide phosphodiesterases (PDEs) catalyze hydrolysis of cAMP to an inactive form, and therefore directly regulate cAMP signaling. The PDE4D family dominates in synthetic VSMCs, and there is considerable interest in determining how distinct PDE4D isoforms affect cell function. Specifically, we are interested in the potential link between short isoforms of PDE4D and VSMC desensitization to pharmacological agents that impact cardiovascular disease via cAMP signaling. This study extends on previous work that assessed the expression of PDE4D splice variants in rat aortic VSMCs following prolonged challenge with cAMP-elevating agents. It was determined that PDE4D1 and PDE4D2 were uniquely expressed in synthetic VSMCs incubated with these agents, and that this upregulation impacted PDE activity and cAMP accumulation in these cells. Here, we report that PDE4D1 and PDE4D2 are markedly upregulated in synthetic human aortic smooth muscle cells (HASMCs) following prolonged challenge with cAMP-elevating agents. Using a combination of RNAi-based and pharmacological approaches, we establish that this upregulation is reflected in levels of cAMP PDE activity, and restricted to the cytosolic sub-cellular compartment. Our results suggest a role for localized PDE4D1 and PDE4D2 activity in regulating cAMP-mediated desensitization in HASMCs, and highlight their therapeutic potential in treating various cardiovascular diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a European BIOMED-2 collaborative study, multiplex PCR assays have successfully been developed and standardized for the detection of clonally rearranged immunoglobulin (Ig) and T-cell receptor (TCR) genes and the chromosome aberrations t(11;14) and t(14;18). This has resulted in 107 different primers in only 18 multiplex PCR tubes: three VH-JH, two DH-JH, two Ig kappa (IGK), one Ig lambda (IGL), three TCR beta (TCRB), two TCR gamma (TCRG), one TCR delta (TCRD), three BCL1-Ig heavy chain (IGH), and one BCL2-IGH. The PCR products of Ig/TCR genes can be analyzed for clonality assessment by heteroduplex analysis or GeneScanning. The detection rate of clonal rearrangements using the BIOMED-2 primer sets is unprecedentedly high. This is mainly based on the complementarity of the various BIOMED-2 tubes. In particular, combined application of IGH (VH-JH and DH-JH) and IGK tubes can detect virtually all clonal B-cell proliferations, even in B-cell malignancies with high levels of somatic mutations. The contribution of IGL gene rearrangements seems limited. Combined usage of the TCRB and TCRG tubes detects virtually all clonal T-cell populations, whereas the TCRD tube has added value in case of TCRgammadelta(+) T-cell proliferations. The BIOMED-2 multiplex tubes can now be used for diagnostic clonality studies as well as for the identification of PCR targets suitable for the detection of minimal residual disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides (SxFCM) were prepared and evaluated as the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All samples exhibited a cubic phase structure and the lattice shrinked with increasing the Sr-deficiency as shown in XRD patterns. XPS results determined that the transition elements (Co/Fe/Mo) in SxFCM oxides were in a mixed valence state, demonstrating the small polaron hopping conductivity mechanism existed. Among the samples, S1.950FCM presented the lowest coefficient of thermal expansion of 15.62 × 10-6 K-1, the highest conductivity value of 28 S cm-1 at 500 °C, and the lowest interfacial polarization resistance of 0.093 Ω cm2 at 800 °C, respectively. Furthermore, an anode-supported single cell with a S1.950FCM cathode was prepared, demonstrating a maximum power density of 1.16 W cm-2 at 800 °C by using wet H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that the introduction of Sr-deficiency can dramatically improve the electrochemical performance of Sr2Fe1.4Co0.1Mo0.5O6-δ, showing great promise as a novel cathode candidate material for IT-SOFCs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human β-defensins (hBDs) are a family of cationic peptides able to directly kill a wide range of microorganisms including bacteria, fungi and viruses. In addition to their antimicrobial activities, defensins also contribute to the modulation of both the host innate and adaptive immunity. In this project, we demonstrate that the αCD3/28 co-stimulation of human CD4+ T cells in the presence of 10μg/ml hBD-2 or hBD-3 together causes an up-regulation in numbers of CD4+CD69+CD25+ and CD4+CD69-CD25+ T cell subsets, indicating that the treatment of hBD-2 and 3 enhances CD4+ T cell activation. Consistent with this finding, proliferation assay using CFSE suggests that hBD-2 and hBD-3 treatment in vitro induces the proliferation of CD4+ T cells following by 96hrs culture. Analysis of expression of the regulatory T cells (Tregs) specific marker, FoxP3, reveals a shift in the CD4+CD127-CD25+ Treg subset at 18hrs. However, at the later time point, we found that the percentage of FoxP3+cells decreased in the CD4+CD127-CD25+ Treg population, whereas the presence of the FoxP3+CTLA-4+ Treg subset increased. These data indicate that Treg suppressive function may be potentially defective following the co-incubation of purified T cells with either hBD-2 or hBD-3 for 42hrs in vitro due to the apparent loss of FoxP3 expression. We further characterise the role of hBD-2 and hBD-3 in driving human CD4+ T cells polarisation. Our in vitro data suggests that treatment with hBD-2 and hBD-3 can not only induces effector T cell (Teff) differentiation into RORγt+T-bet+ (Th17/Th1) cells, but can also trigger the differentiation of Treg expressing RORγt and T-bet rather than the master controller of Treg function, FoxP3. This apparent plasticity of T cell phenotype allows them to convert from Treg to Th1/17-like effector T cell phenotype following 18hrs in culture. By 42hrs in culture, treatment with hBD-2 and hBD-3 induced both Teff cell and Treg cell differentiation towards the Th17-like phenotype. Compared with the treatment with hBD-2, treatment with hBD-3 induced a more pronounced effect to increase levels of RORγt in CD4+ T cells. This elevated expression may, in turn, be responsible for the induction of higher IL-17A secretion. Consistent with this idea, it was found that treatment with hBD-3 but not hBD-2 was capable of inducing the higher level of secretion of IL-17A. Additionally, treatment with hBD-3 induced an increased expression of IL-6, which is capable of driving the differentiation of naïve T cells towards IL-17-producing Th17 cells. Functionally, using the Treg suppression assay, the data suggested that hBD-2 may dampen down Treg cell ability to induce suppression of Teff cell activity. Interestingly, co-culture with hBD-2 would also appear to increase Teff cell resistance to Treg immunoregulation in vitro. Further investigation using microarray gene analysis revealed chemokine C-C motif ligand 1 (CCL1) as potential genes responding to hBD-2 treatment. The blockade of CCL1 has been reported to inhibit Treg suppressive function. Thus, this study explored the function of these antimicrobial candidates in regulating CD4+ T cell plasticity which could result in hBD-2 and hBD-3 being able to regulate its own production, but also may regulate Treg and Teff cell development and function, thus strengthening the link between innate and adaptive immunity

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study into the role of secreted CLIC3 in tumour cell invasion. The initiation and progression of cancers is thought to be linked to their relationship with a population of activated fibroblasts, which are associated with tumours. I have used an organotypic approach, in which plugs of collagen I are preconditioned with fibroblastic cells, to characterise the mechanisms through which carcinoma-associated fibroblasts (CAFs) influence the invasive behaviour of tumour cells. I have found that immortalised cancer-associated fibroblasts (iCAFs) support increased invasiveness of cancer cells, and that this is associated with the ability of CAFs to increase the fibrillar collagen content of the extracellular matrix (ECM). To gain mechanistic insight into this phenomenon, an in-depth SILAC-based mass proteomic analysis was conducted, which allowed quantitative comparison of the proteomes of iCAFs and immortalised normal fibroblast (iNFs) controls. Chloride Intracellular Channel Protein 3 (CLIC3) was one of the most significantly upregulated components of the iCAF proteome. Knockdown of CLIC3 in iCAFs reduced the ability of these cells to remodel the ECM and to support tumour cell invasion through organotypic plugs. A series of experiments, including proteomic analysis of cell culture medium that had been preconditioned by iCAFs, indicated that CLIC3 itself was a component of the iCAF secretome that was responsible for the ability of iCAFs to drive tumour cell invasiveness. Moreover, addition of soluble recombinant CLIC3 (rCLIC3) was sufficient to drive the extension of invasive pseudopods in cancer cell lines, and to promote disruption of the basement membrane in a 3D in vitro model of the ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) transition. My investigation into the mechanism through which extracellular CLIC3 drives tumour cell invasiveness led me to focus on the relationship between CLIC3 and the ECM modifying enzyme, transglutaminase-2 (TG2). Through this, I have found that TG2 physically associates with CLIC3 and that TG2 is necessary for CLIC3 to drive tumour cell invasiveness. These data identifying CLIC3 as a key pro-invasive factor, which is secreted by CAFs, provides an unprecedented mechanism through which the stroma may drive cancer progression.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim: To determine the expression of tissue inhibitors of metalloproteinases (TIMP-2) in oral squamous cell carcinoma (OSCC) and the difference in its expression level between positive and negative HPV-16 (human papilloma virus- 16) OSCC patients. Methods: This study was conducted on 33 biopsies obtained from patients with OSCC and 10 normal oral mucosa as controls. In situ hybridization (ISH) was used to investigate the presence of HPV-16, while immunohistochemistry (IHC) was used to estimate the expression level of TIMP-2. Results: The TIMP-2 was expressed in 27 (81.8%) of OSCC sections with no significant difference between its expression level in HPV-16 positive and HPV-16 negative OSCC cases (p=0.058). TIMP-2 was found to be highly expressed in OSCC sections, and the presence of HPV was not related to its overexpression. Conclusions: The percentage of samples that appeared to accommodate detectable HPV-16 was high, but no significant difference was observed in relation to TIMP-2 expression level. Future studies with a larger number of patients are highly recommended to address the possible association between TIMp-2 and OSCC positive HPV-16.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poster presented at the 2015 Keystone Symposia Conference X5: HIV Vaccines. Banff, Alberta, Canada, 22-27 March 2015

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Master, Biochemistry) -- Queen's University, 2016-10-14 02:44:01.604

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leg ulcers represent a particularly disabling complication in patients with sickle cell disease (SCD). Platelet gel (PG) is a novel therapeutic strategy used for accelerating wound healing of a wide range of tissues through the continuous release of platelet growth factors. Here, we describe the use of PG preparation according to Anitua's PRGF (preparations rich in growth factors) protocol for treating chronic nonhealing ulcers in patients with SCD. A positive response occurred in 3 patients with an area reduction of 85.7% to 100%, which occurred within 7 to 10 weeks, and a 35.2% and 20.5% of area reduction in 2 other patients, who however, had large ulcers. After calcium chloride addition, the platelet-rich plasmas demonstrated enhanced platelet-derived growth factors-BB (P < .001), transforming growth factor-β1 (P = .015), vascular endothelial growth factors (P = .03), and hepatocyte growth factors (nonsignificant) secretion. Furthermore, calcium chloride addition induced a significant decrease in platelet number (P = .0134) and there was no leukocyte detection in the PG product. These results demonstrate that PG treatment might impact the healing of leg ulcers in sickle cell disease, especially in patients with small ulcers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism underlying castration-induced prostate regression, which is a classical physiological concept translated into the therapeutic treatment of advanced prostate cancer, involves epithelial cell apoptosis. In searching for events and mechanisms contributing to prostate regression in response to androgen modulation, we have frequently observed the collective deletion of epithelial cells. This work was undertaken to characterize this phenomenon hereafter named desquamation and to verify its presence after 17β-estradiol (E2) administration. Electron microscopy revealed that the desquamating cells had preserved cell-cell junctions and collapsed nuclear contents. The TUNEL reaction was negative for these cells, which were also negative for cleaved caspases-8, -9, -3 and nuclear apoptosis-inducing factor. Detailed analyses revealed that the condensed chromatin was first affected detaching from the nuclear lamina, which was observable after lamin A immunohistochemistry, suggesting the lack of lamin A degradation. A search in animals treated with supraphysiological E2 employed as an alternative anti-androgen treatment revealed no desquamation. The combined treatment (Cas + E2 group) caused changes particular to each treatment, including desquamation. In conclusion, desquamation appeared as a novel phenomenon contributing to collective prostate epithelial cell deletion, distinct from the classical castration-induced apoptosis and particular to the androgen deprivation resulting from surgical castration, and should be considered as part of the mechanisms promoting organ regression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).