975 resultados para CIRCADIAN OSCILLATOR
Resumo:
Inter-individual differences in the phase of the endogenous circadian rhythms have been established. Individuals with early circadian phase are called morning types; those with late circadian phase are evening types. The Horne and Östberg Morningness-Eveningness Questionnaire (MEQ) is the most frequently used to assess individual chronotype. The distribution of MEQ scores is likely to be biased by several fact, ors, such as gender, age, genetic background, latitude, and social habits. The objective of the present study was to determine the effect of different social synchronizers on the sleep/wake cycle of persons with different chronotypes. Volunteers were selected from a total of 1232 UFPR undergraduate students who completed the MEQ. Thirty-two subjects completed the study, including 8 morning types, 8 evening types and 16 intermediate types. Sleep schedules were recorded by actigraphy for 1 week on two occasions: during the school term and during vacation. Sleep onset and offset times, sleep duration, and mid-sleep time for each chronotype group were compared by the Mann-Whitney U-test separately for school term and vacation. School term and vacation data were compared by the Wilcoxon matched-pair test. Morning types showed earlier sleep times and longer sleep duration compared with evening types (23:00 ± 44 and 508.9 ± 50.27 vs 01:08 ± 61.95 and 456.44 ± 59.08, for the weekdays during vacation). During vacation, the subjects showed later sleep times, except for the morning types, who did not exhibit differences for sleep onset times. The results support the idea that social schedules have an impact on the expression of circadian rhythmicity but this impact depends on the individual chronotype.
Resumo:
Flight safety is one of the most important and frequently discussed issues in aviation. Recent accident inquiries have raised questions as to how the work of flight crews is organized and the extent to which these conditions may have been contributing factors to accidents. Fatigue is based on physiologic limitations, which are reflected in performance deficits. The purpose of the present study was to provide an analysis of the periods of the day in which pilots working for a commercial airline presented major errors. Errors made by 515 captains and 472 copilots were analyzed using data from flight operation quality assurance systems. To analyze the times of day (shifts) during which incidents occurred, we divided the light-dark cycle (24:00) in four periods: morning, afternoon, night, and early morning. The differences of risk during the day were reported as the ratio of morning to afternoon, morning to night and morning to early morning error rates. For the purposes of this research, level 3 events alone were taken into account, since these were the most serious in which company operational limits were exceeded or when established procedures were not followed. According to airline flight schedules, 35% of flights take place in the morning period, 32% in the afternoon, 26% at night, and 7% in the early morning. Data showed that the risk of errors increased by almost 50% in the early morning relative to the morning period (ratio of 1:1.46). For the period of the afternoon, the ratio was 1:1.04 and for the night a ratio of 1:1.05 was found. These results showed that the period of the early morning represented a greater risk of attention problems and fatigue.
Resumo:
Studies have shown that the frequency or worsening of sleep disorders tends to increase with age and that the ability to perform circadian adjustments tends to decrease in individuals who work the night shift. This condition can cause consequences such as excessive sleepiness, which are often a factor in accidents that occur at work. The present study investigated the effects of age on the daytime and nighttime sleep patterns using polysomnography (PSG) of long-haul bus drivers working fixed night or day shifts. A total of 124 drivers, free of sleep disorders and grouped according to age (<45 years, N = 85, and ≥45 years, N = 39) and PSG timing (daytime (D) PSG, N = 60; nighttime (N) PSG, N = 64) participated in the study. We observed a significant effect of bedtime (D vs N) and found that the length of daytime sleep was shorter [D: <45 years (336.10 ± 73.75 min) vs N: <45 years (398 ± 78.79 min) and D: ≥45 years (346.57 ± 43.17 min) vs N: ≥45 years (386.44 ± 52.92 min); P ≤ 0.05]. Daytime sleep was less efficient compared to nighttime sleep [D: <45 years (78.86 ± 13.30%) vs N: <45 years (86.45 ± 9.77%) and D: ≥45 years (79.89 ± 9.45%) and N: ≥45 years (83.13 ± 9.13%); P ≤ 0.05]. An effect of age was observed for rapid eye movement sleep [D: <45 years (18.05 ± 6.12%) vs D: ≥45 years (15.48 ± 7.11%) and N: <45 years (23.88 ± 6.75%) vs N: ≥45 years (20.77 ± 5.64%); P ≤ 0.05], which was greater in younger drivers. These findings are inconsistent with the notion that older night workers are more adversely affected than younger night workers by the challenge of attempting to rest during the day.
Resumo:
The Period 3 and Clock genes are important components of the mammalian molecular circadian system. Studies have shown association between polymorphisms in these clock genes and circadian phenotypes in different populations. Nevertheless, differences in the pattern of allele frequency and genotyping distribution are systematically observed in studies with different ethnic groups. To investigate and compare the pattern of distribution in a sample of Asian and Caucasian populations living in Brazil, we evaluated two well-studied polymorphisms in the clock genes: a variable number of tandem repeats (VNTR) in PER3 and a single nucleotide polymorphism (SNP) in CLOCK. The aim of this investigation was to search for clues about human evolutionary processes related to circadian rhythms. We selected 109 Asian and 135 Caucasian descendants. The frequencies of the shorter allele (4 repeats) in the PER3 gene and the T allele in the CLOCK gene among Asians (0.86 and 0.84, respectively) were significantly higher than among Caucasians (0.69 and 0.71, respectively). Our results directly confirmed the different distribution of these polymorphisms between the Asian and Caucasian ethnic groups. Given the genetic differences found between groups, two points became evident: first, ethnic variations may have implications for the interpretation of results in circadian rhythm association studies, and second, the question may be raised about which evolutionary conditions shaped these genetic clock variations.
Resumo:
We studied the effects of adverse conditions such as constant light (LL) on the circadian rhythm of malate (MDH, EC 1.1.1.37) and lactate (LDH, EC 1.1.1.27) dehydrogenase activities of the testes of male Wistar rats on postnatal day 28 (PN28), anxiety-like behavior (elevated plus-maze test) at PN60 and sexual behavior at PN120. The rats were assigned to mother groups on day 10 of pregnancy: control (12-h light/dark), LL (light from day 10 to 21 of pregnancy), and LL+Mel (LL and sc injection to the mothers of a daily dose of melatonin, 1 mg/kg body weight at circadian time 12, from day 17 to 21 of pregnancy). LL offspring did not show circadian rhythms of MDH (N = 62) and LDH (N = 63) activities (cosinor and ANOVA-LSD Fisher). They presented a 44.7% decrease in open-arm entries and a 67.9% decrease in time (plus-maze test, N = 15, P < 0.001, Mann-Whitney U-test and Kruskal-Wallis test), an increase in mounting (94.4%), intromission (94.5%) and ejaculation (56.6%) latencies (N = 12, P < 0.01, Mann-Whitney U-test and Kruskal-Wallis test) and lower numbers of these events (61, 59 and 73%, respectively; P < 0.01, N = 12) compared to controls. The offspring of the LL+Mel group presented MDH and LDH circadian rhythms (P < 0.05, N = 50, cosinor and ANOVA-LSD Fisher), anxiety-like and sexual behaviors similar to control. These findings supported the importance of the melatonin signal and provide evidence for the protective effects of hormones on maternal programming during gestation. This protective action of melatonin is probably related to its entrainment capacity, favoring internal coupling of the fetal multioscillatory system.
Resumo:
The present review evaluates the role of sleep and its alteration in triggering problems of glucose metabolism and the possible involvement of adipokines in this process. A reduction in the amount of time spent sleeping has become an endemic condition in modern society, and a search of the current literature has found important associations between sleep loss and alterations of nutritional and metabolic contexts. Studies suggest that sleep loss is associated with problems in glucose metabolism and a higher risk for the development of insulin resistance and type 2 diabetes mellitus. The mechanism involved may be associated with the decreased efficacy of regulation of the hypothalamus-pituitary-adrenal axis by negative feedback mechanisms in sleep-deprivation conditions. In addition, changes in the circadian pattern of growth hormone (GH) secretion might also contribute to the alterations in glucose regulation observed during sleep loss. On the other hand, sleep deprivation stress affects adipokines - increasing tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and decreasing leptin and adiponectin -, thus establishing a possible association between sleep-debt, adipokines and glucose metabolism. Thus, a modified release of adipokines resulting from sleep deprivation could lead to a chronic sub-inflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes mellitus. Further studies are necessary to investigate the role of sleep loss in adipokine release and its relationship with glucose metabolism.
Resumo:
Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells, subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.
Resumo:
Chronotype is an established concept designed to identify distinct phase relationships between the expression of circadian rhythms and external synchronizers in humans. Although it has been widely accepted that chronotype is subjected to ontogenetic modulation, there is no consensus on the interaction between age and gender. This study aimed to determine the relationship between age- and gender-related changes in the morningness-eveningness character in a large sample of people. A total of 14,650 volunteers were asked to complete the Brazilian version of the Horne and Östberg chronotype questionnaire. The data demonstrated that, on average, women were more morning-oriented than men until the age of 30 and there were no significant differences between men and women from 30 to 45 years of age. In contrast to the situation observed until the age of 30, women older than 45 years were more evening-oriented than men. These results suggest that the ontogenetic development of the circadian timekeeping system is more plastic in men, as represented by the larger amplitude of chronotype changes throughout their aging process. The phase delay of adolescence and phase advance of the elderly seem to be phenomena that are more markedly present in men than in women. Thus, our data, for the first time, provide support that sharply opposes the view that there is a single path toward morningness as a function of age, regardless of gender.
Resumo:
Humans are profoundly changing aquatic environments through climate change and the release of nutrients and chemicals. To understand the effects of these changes on natural populations, knowledge on individuals’ environmental responses is needed. At the molecular level, the environmental responses are partly mediated by chances in messenger RNA and protein levels. In this thesis I study messenger RNA and protein responses to an assortment of environmental stressors in fish. As daily (diel) rhythms are known to be ubiquitous in different tissues, I particularly focus on diel patterns in the responses. The studied species are the three-spined stickleback (Gasterosteus aculeatus L.) and the Arctic char (Salvelinus alpinus L.), both of which have circumpolar distribution in the Northern hemisphere. In the first two studies, three-spined sticklebacks were exposed to both the non-steroidal anti-inflammatory drug diclofenac and low-oxygen conditions (hypoxia), and their responses measured at separate time points in the liver and gills. The results show how the seemingly unrelated environmental stressors, hypoxia and anti-inflammatory drugs, can have harmful combined effects that differ from the effects of each stressor alone. Moreover, both stressors disturbed natural diel patterns in gene expression. In the third study, I studied the responses of three-spined sticklebacks to two test chemicals: one used in hormonal medicine (17α-ethinyl-oestradiol) and one used as a plasticizer and solvent chemical (di-n-butyl phthalate). The results suggest that the phthalate can affect genes related to spermatogenesis in fish testes, while estrogen-mimicking compounds can lead to numerous disturbances in the endocrine system. In the final study, the temperature-dependence of diel rhythms in messenger RNA levels were evaluated in the liver tissue of the Arctic char, a cold-adapted salmonid. The results show that cold acclimation repressed diel rhythms in gene expression compared to warm-acclimated fish, in which the expression of hundreds of genes was rhythmic, suggesting the circadian clock of the Arctic fish species can be sensitive to temperature. Overall, the results of the thesis indicate that fishes’ responses to abiotic factors interact with their diel rhythms, and more studies on the consequences of these interactions are needed to comprehensively understand human impacts on ecosystems.
Resumo:
A detailed theoretical investigation of the large amplitude motions in the S, excited electronic state of formic acid (HCOOH) was done. This study focussed on the the S, «- So electronic band system of formic acid (HCOOH). The torsion and wagging large amplitude motions of the S, were considered in detail. The potential surfaces were simulated using RHF/UHF ab-initio calculations for the two electronic states. The energy levels were evaluated by the variational method using free rotor basis functions for the torsional coordinates and harmonic oscillator basis functions for the wagging coordinates. The simulated spectrum was compared to the slit-jet-cooled fluorescence excitation spectrum allowing for the assignment of several vibronic bands. A rotational analysis of certain bands predicted that the individual bands are a mixture of rotational a, b and c-type components.The electronically allowed transition results in the c-type or Franck-Condon band and the electronically forbidden, but vibronically allowed transition creates the a/b-type or Herzberg-Teller components. The inversion splitting between these two band types differs for each band. The analysis was able to predict the ratio of the a, b and c-type components of each band.
Resumo:
/c-(BETS)2FeBr4 is the first antiferromagnetic organic superconductor with successive antiferromagnetic and superconducting transitions at Ta^=2.5K and Tc=l.lK respectively at ambient pressure. Polarized reflectance measurements were performed on three single crystalsamples of this material using a Briiker IFS66V/S Interferometer, and a Bolometer detector or an MCT detector, at seven temperatures between 4K and 300K, in both the far-infrared and mid-infrared frequency range. After the reflectance results were obtained, the Kramers-Kronig dispersion relation was apphed to determine the optical conductivity of /c-(BETS)2FeBr4 at these seven temperatures. Additionally, the optical conductivity spectra were fitted with a Drude/Lorentz Oscillator model in order to study the evolution of the optical conductivity with temperature along the a-axis and c-axis. The resistivities calculated from the Drude model parameters along the a-axis and c-axis agreed reasonably with previous transport measurements.
Resumo:
The near ultraviolet absorption of phosgene has been assigned to a * 1 1 ~.--n, A;-- Al electronic transition from vapour phase spectra recorded under conditions of high resolution and low_t~mperature. Progressions in Vi, v2' V3' V4 and V4 ha\1e been identified in the spectrum and have been analyzed in terms of vibronic transitions between a planar ground and a nonplanar excited state. A ba~rier height of 3170 cm~l:and a nona planar equilibrium angle of 32.5 were calculated for the upper state from a fit of the energy levels of a Lorentzian-guadratic potential func- ~ion to the observed levels of V 4 . ' ~he false ori- 3in, 41 0 , of the spectrum has been assigned to the band at 33,631 cm -1 . An oscillator strength of -3 1 . 1 f = 1. a x 10 has been obtained for the A - A 2 1 transition.
Resumo:
Four groups of rainbow trout, Salmo gairdneri, were acclimated to 2°, 10°, and 18°e, and to a diurnal temperature cycle (100 ± 4°C). To evaluate the influence of cycling temperatures in terms of an immediate as opposed to acclimatory response various ventilatory-cardiovascular rate functions were observed for trout, either acclimated to cycling temperatures or acclimated to constant temperatures and exposed to a diurnal temperature cycle for the first time (10° ± 4°C for trout acclimated to 10°C; 18°+ 4°C for trout acclimated to l8°e). Gill resistance and the cardiac to ventilatory rate ratio were then calculated. Following a post preparatory recovery period of 36 hr, measurements were made over a 48 hour period with the first 24 hours being at constant temperature in the case of statically-acclimated fish followed by 24 hours under cyclic temperature conditions. Trout exhibited marked changes in oxygen consumption (Vo ) with temp- 2 erature both between acclimation groups, and in response to the diurnal temperature cycle. This increase in oxygen uptake appears to have been achieved by adjustment of ventilatory and, to some extent, cardiovascular activity. Trout exhibited significant changes in ventilatory rate (VR), stroke volume (Vsv), and flow (VG) in response to temperature. Marked changes in cardiac rate were also observed. These findings are discussed in relation to their importance in convective oxygen transport via water and blood at the gills and tissues. Trout also exhibited marked changes in pressure waveforms associated with the action of the resp; ratory pumps with temperature. Mean differenti a 1 pressure increased with temperature as did gill resistance and utilization. This data is discussed in relation to its importance in diffusive oxygen transport and the conditions for gas exchange at the gills. With one exception, rainbow trout were able to respond to changes in oxygen demand and availability associated with changes in temperature by means of adjustments in ventilation, and possibly pafusion, and the conditions for gas exchange at the gills. Trout acclimated to 18°C, however, and exposed to high cyclic temperatures, showed signs of the ventilatory and cardiovascular distress problems commonly associated with low circulating levels of oxygen in the blood. It appears these trout were unable to fully meet the oxygen requirements associated with c~ling temperatures above 18°C. These findings were discussed in relation to possible limitations in the cardiovascular-ventilatory response at high temperatures. The response of trout acclimated to cycling temperatures was generally similar to that for trout acclimated to constant temperatures and exposed to cycling temperatures for the first time. This result suggested that both groups of fish may have been acclimated to a similar thermal range, regardless of the acclimation regime employed. Such a phenomenon would allow trout of either acclimation group to respond equally well to the imposed temperature cycle. Rainbow trout showed no evidence of significant diurnal rhythm in any parameters observed at constant temperatures (2°, 10°, and 18° C), and under a 12/12 light-dark photoperiod regime. This was not taken to indicate an absence of circadian rhythms in these trout, but rather a deficiency in the recording methods used in the study.
Resumo:
Impurity free eluission spectra of HCCCHO and DCCCHO have been rephotographed using the electronic-energy-exchange method with benzene as a carrier gas. The near ultraviolet spectra of ReeCHO and DCCCHO were photographed in a sorption under conditions of high resolution with absorption path lengths up to 100 meters. The emission and absorption spectra of Propynal resulting from 3 n 1 t 1\ - A excitation has been reanalyzed in som.e detail. Botrl of the eH out-of-plane wagging modes were found to have negative anharmonicity. A barrier height of 56.8/0.0 cm- 1 and a nonplanar oft , , equilibrium angle of 17 3 /30 are calculated for the V 10/ lJ 11 modes. The in-plane and out-of-plane v1. brational modes in the 3A." and 1a~. ' elec ronic states of Propynal were subjected to a normal coordinate treatment in the approximat :on of tIle Urey-Bradley force field. From the relative oscillator strengths of the trans1·t1·0ns connect i ng t he v ibrat1•0n1ess lA' , state and t,he V1· bron1·C 3· if levels of the A state, the differences in equilibrium configuration were evaluated from an approximate Franck-Condon analysis based on the ground state normal coordinates. As this treatment gave 512 possible geometrical structures for the upper state, it 4 was necessary to resort to a comparison of the observed and calculated moments of inertia along with chemical intuition to isolate the structure. A test of the correctness of the calculated structure change and the vibrational assignment was raade by evaluating the intensities of the inplane and out-oi-plane fundarnental, sequence, and cross sequellce transitions y the exact Franck-Condon method.
Resumo:
Several recent studies have described the period of impaired alertness and performance known as sleep inertia that occurs upon awakening from a full night of sleep. They report that sleep inertia dissipates in a saturating exponential manner, the exact time course being task dependent, but generally persisting for one to two hours. A number of factors, including sleep architecture, sleep depth and circadian variables are also thought to affect the duration and intensity. The present study sought to replicate their findings for subjective alertness and reaction time and also to examine electrophysiological changes through the use of event-related potentials (ERPs). Secondly, several sleep parameters were examined for potential effects on the initial intensity of sleep inertia. Ten participants spent two consecutive nights and subsequent mornings in the sleep lab. Sleep architecture was recorded for a fiiU nocturnal episode of sleep based on participants' habitual sleep patterns. Subjective alertness and performance was measured for a 90-minute period after awakening. Alertness was measured every five minutes using the Stanford Sleepiness Scale (SSS) and a visual analogue scale (VAS) of sleepiness. An auditory tone also served as the target stimulus for an oddball task designed to examine the NlOO and P300 components ofthe ERP waveform. The five-minute oddball task was presented at 15-minute intervals over the initial 90-minutes after awakening to obtain six measures of average RT and amplitude and latency for NlOO and P300. Standard polysomnographic recording were used to obtain digital EEG and describe the night of sleep. Power spectral analyses (FFT) were used to calculate slow wave activity (SWA) as a measure of sleep depth for the whole night, 90-minutes before awakening and five minutes before awakening.